
NASA 
CR 

I 2897 
c.1 

i ~. 
NASA Contractor Report 2897 

CAVE: A Computer Code for KMLAND A-, N. M.’ 
Two-Dimensional Transient 
Heating Analysis of Conceptual 
Thermal. Protection Systems 
for Hypersonic Vehicles 

Kenneth A. Rathjen 

CONTRACT NASl-13655 

NOVEMBER 1977 



TECH LIBRARY KAFB, NM 

NASA Contractor Report 2897 

CAVE: A Computer Code for 
Two-Dimensional Transient 
Heating Analysis of Conceptual 
Thermal Protection Systems 
for Hypersonic Vehicles 

Kenneth A. Rathjen 

Grumman Aerospace Corporation 
Bethpage, New York 

Prepared for 
Langley Research Center 
under Contract NASl-13655 funsn 
National Aeronautics 
and Space Administration 

Scientific and Technical 
Information Office 

1977 





4 

CONTENTS 

SUMMARY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 

INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 

DESCRIPTION OF CAVE CODE OPERATION . . . . . . . . . . . . . . 7 

LEADING EDGE GEOMETRY ........................ 13 
3.1 Discussion ................................. 13 
3.2 Input Data Format for Leading Edge Geometry ......... 18 
3.3 Sample Problem for Leading Edge Geometry .......... 23 

COOLED PANEL, SLAB AND X-24C STRUCTURE .......... 34 
4.1 Mscussion ................................. 34 
4.2 Input Data Format for Cooled Panel and Slab Geometries . . 45 
4.3 Input Data Format for X-24C Geometry .............. 50 
4.4 Sample Problem for Cooled Panel Geometry .......... 55 
4.5 Sample Problem for Slab Geometry ................ 65 
4.6 Sample Problem for X-24C Geometry ............... 72 

5 GENERALGEOMETRY ............................ 83 
5.1 Discussion ................................. 83 
5.2 Input Data Format for General Geometry ............. 87 
5.3 Sample Problem for General Geometry .............. 92 

A Description of the Hybrid Analytical-Numerical Technique . . . . . 101 

B Aerodynamic Heating Equations ....................... 115 

C Linearization of Radiation Coupling .................... 127 

D Programmer Oriented Documentation of the Code ........... 130 

E Discussion of Nonlinearities and Time Dependency of 
h and TAW* .................................... 181 

F Derivation of Solution to the Equation Mk = B_T + F .......... 183 

iii 

- 



ILLUSTRATIONS 

Figure 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
A-l 
A-2 

A-3 

B-l 
D-l 
D-2 

D-3 
D-4 
D-5 
D-6 
D-7 
D-8 
D-9 
D-10 
D-11 
D-12 
D-13 
D-14 
D-15 
D-16 
D-17 
D-18 

Geometries Built Into CAVE Code . . . . . . . . . . . . . . . . . , . . . 
Leading Edge Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Grid Network for Leading Edge Geometry . . . . . . . . . . . . . . . . 
Grid Network for Missile Leading Edge With Cooling . . . . . , . . . 
Cooled Panel Geometry (Square Corner) . . . , . . . . . , . . . . . . . 
Cooled Panel Geometry (Round Corner) . . . . . . . . . . . . . . . . . . 
Slab Geometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
X-24C Structure’ : : 1 . 
Grid Layout for Cooled *Pane’1 ‘(SC&,’ C&r&-)’ : : : : : : : : : : 1 : : 
Grid Layout for Cooled Panel (Round Corner) . . . . . . . . . . . . . . 
Grid Network for Slab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 
Grid Network for X-24C Geometry . . . . . . . . . . . . . . . . . . . . . 
Grid Network for a General Geometry Problem 
A Portion of a Grid Network That Cannot Be Handlkd : 1 : : : : : : : 
General Geometry Problem . . . . . . . . . . . . . . . . . . . 
Nodal Network for One-Dime&&ai ‘Conduction Problem. . , . . . 
Comparison of Nodal Point Eigenvalue Solution and the 

Exact Solution at X=0 . . . . , . . . . . . . . . . . . . . . . . . . . . . . 
Comparison of Nodal Point Eigenvalue Solution and the 

Exact Solution at ~0.9 . . . . . . . . . . . . . . . . . . . . . . . . . . 
Transition Criterion 
Simplified Flow of Lo&d in’ CAVE: : : : : : : 1 : : : : : 1 : 1 : 1 : : : : 
Organization of Cave in Terms of the More Important 

Subroutine Calls (2 Sheets) 
Subroutine SIZE2 Flow Chart 
Subroutine PCP4 Flow Chart 
Subroutine SLAB2 Flow Chart’ 
Subroutine LEAD4 Flow Chart 
Subroutine X24C Flow Chart . 
Subroutine GEN Flow Chart, . 

........................ 

........................ 

........................ 

........................ 

........................ 

........................ 

........................ 

Subroutine MATOUT Flow Chart . . . , . . . . . . . . . . . . . . . . . , 
Subroutine XTABSl Flow Chart 
Subroutine OVLY20 Flow Chart (4 ‘Sh&ts)’ : : : : 1 : 1 : 1 1 1 : : 1 : : 
Subroutine LINFIT Flow Chart , . . . , . . . . . . . . , . . . , . . , , . 
Subroutine ATTAC2 Flow Chart . . . . . . . . . . . . . . . . . . . . , . . 
Subroutine LEES1 Flow Chart 
Subroutine PROP Flow Chart . : : : : 1 : : : : : 1 : : : : : 1 : : : : : : : 
Subroutine PRPOUT Flow Chart . . . . , . . . . . . . . . . . . , . . . . , 
Subroutine XINTPl Flow Chart 
Subroutine FLATH Flow Chart. : : : : 1 : : : : : : : : : : : 1 : : : : : : 

4 
14 
15 
25 
35 
36 
37 
38 
40 
41 
43 
44 
84 
86 
93 

102 

111 

11; 
122 
132 

135 
137 
138 
139 
140 
141 
142 
143 
144 
145 
149 
150 
151 
152 
153 
154 
155 

iv 



I \ 

1 

Figure Page 

D-19 Subroutine ATMOS Flow Chart ....................... 156 
D-20 Subroutine TRANS Flow Chart ........................ 157 
D-21 Subroutine DESDAl Flow Chart ........................ 158 
D-22 Subroutine IJEN Flow Chart ......................... 159 
D-23 Subroutine ORNML Flow Chart ....................... 160 
D-24 Subroutine HETRAl Flow Chart ....................... 161 
D-25 Subroutine RVORDR Flow Chart ...................... 162 
D-26 Subroutine SCAPRB Flow Chart ....................... 163 
F-l Four Node System ................................ 184 

Table 

A-l Mix of Constant Machine Time Solutions ................. 113 
B-l Nomenclature and Units. ........................... 123 
D-l Subroutines Used in CAVE. .......................... 133 

Sheet 

3.3 

4.4 
4.5 
4.6 
5.3 
D-l 
D-2 
D-3 
D-4 
D-5 
D-6 
D-7 
D-8 
D-9 
D-10 

ILLUSTRATIONS (cont’d) 

Input/Output Data (In Free Format) for Leading Edge Problem 
(8 Sheets) .................................... 

Input/Output Data for Cooled Panel Problem (8 Sheets) ........ 
Input/Output Data for Slab Problem (6 Sheets). ............. 
Input/Output Data for X-24C Geometry Problem (9 Sheets) ..... 
Input/Output Data for General Geometry Problem (6 Sheets) .... 
Subroutine NURED Description (4 Sheets) ................. 
Subroutine DINTK Description (3 Sheets) ................. 
Subroutine POLRT Description ....................... 
Subroutine EIGVC Description ........................ 
Subroutine BFACS Description (2 Sheets) ................. 
Subroutine BSOLS Description ........................ 
Subroutine AORDER Description. ...................... 
Subroutine DISPLA Description. ....................... 
Subroutine PART Description. ........................ 
Subroutine SWITCH Description ....................... 

26 
57 
66 
73 
94 
164 
168 
171 
172 
173 
175 
176 
177 
178 
179 



SUMMARY 

This report describes a digital computer code CAVE (Conduction Analysis Via 
Eigenvalues), which finds application in the analysis of two-dimensional transient 
heating of hypersonic vehicles. The code is an extension of the work reported in NASA 
CR-2435 for the inverse conduction problem. CAVE is written in FORTRAN IV and 
is operational on both IBM 360-67 and CDC 6600 computers. 

The main advantages of CAVE over more conventional thermal analyzer codes 
are: 

0 

0 

0 

0 

’ 0 

The method of solution is a hybrid analytical-numerical technique that is 
inherently stable permitting large tin, e steps even with the best of 
conductors having the finest of mesh size. This method can provide a 
factor-of-five reduction in machine time compared to conventional 
explicit finite difference methods when structures with small time constants 
are analyzed over long flight trajectories. 

The aerodynamic heating boundary conditions are calculated by the code 
based on the input flight trajectory (i.e. , altitude, velocity and angle of 
attack as functions of time) rather than calculated external to the code 
and then entered as input data. 

The code computes the network conduction and convection links, as well 
as capacitance values, given basic geometrical and mesh sizes, for four 
geometries (leading edges, cooled panels, X-24C structure and slabs). 

The output from the code at each time interval includes the steady-state 
solution corresponding to the boundary conditions for that time interval. 

The code also permits direct input of the heat transfer couplings, node 
capacitances and boundary conditions. 



,. ,, ..,_.._,_. . . . ..-.-_. - -.-- -.---.--- 

This report is primarily a user’s manual for the CAVE code. Input and output 
formats are presented and explained. Sample problems are included. A brief 
summary of the hybrid analytical-numerical technique, which utilizes eigenvalues 

(thermal frequencies) and eigenvectors (thermal mode vectors) is given in an 
appendix. Other appendixes include the aerodynamic heating equations that have been 
incorporated in the code and flow charts. 
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Section 1 

INTRODUCTION 
a 

The computer code CAVE (Conductive Analysis Via Eigenvalues) provides a 
very convenient and efficient tool for predicting the temperatures within thermal 
protection systems for hypersonic vehicles. 

The CAVE code is convenient to use because, first, the boundary conditions 
(convective heat transfer coefficient and adiabatic wall temperature) are calculated 
by the code based on the input values for altitude, velocity and angle of attack as 
functions of time. And, second, because the conduction and convection links between 
nodes, and the capacitance of each node are calculated by the code for leading edges, 
slabs and cooled panels (Fig. 1). The code also permits direct input of the heat 
transfer couplings, node capacitances and boundary conditions for other two- 
dimensional problems. 

CAVE can be very efficient in the use of computer time because the method 
employed to solve the partial differential heat conduction equation is a hybrid 
analytical-numerical (HAN) technique. In this method, spatial derivatives are 
replaced by appropriate finite difference representations and the temporal deriva- 
tives are retained as ordinary derivatives. In effect the problem is subdivided into 
a number of uniform temperature systems or nodes that are coupled and changing in 
temperature. The problem is thereby specified by a set of first order, linear, 
ordinary differential equations. The solution to the set of equations is expressed in 
terms of eigenvectors (thermal mode vectors for the system) and eigenvalues (thermal 
frequencies of the system). Appendix A gives details of the method. The important 
thing to note is that this method is particularly efficient in the use of computer time 
when the heat flux response is contained in the first few thermal modes (character- 
istic of materials with high thermal diffusivity) or if the response for a large number 
of time increments is required, which is precisely the situation in predicting the 
temperatures throughout the flight trajectory of a hypersonic vehicle. A reduction by 

3 
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a factor of five in computer time can be expected over conventional explicit finite 
difference codes for typical flight trajectory analyses. The savings in computer 
time is due to the HAN method being inherently stable and, therefore, permitting 
large time steps.. 

This report is basically a user’s manual for CAVE. Section 2 describes the 
overall operation and running of CAVE while Section 3 discusses the details of the 
leading edge problem. The input data format is presented and the output from sample 
problems is reviewed. Section 4 provides a similar treatment for the slab, cooled 
panel and X-24C geometries. Section 5 discusses an arbitrarily shaped geometry. 
The appendixes present such information as the details of the HAN method (Appendix 
A), the aerodynamic heating equations (Appendix B), a discussion of the treatment 
of radiation (Appendix C), a brief description of the CAVE subroutines (Appendix D), 
a discussion of nonlinearities and time dependency of h and TAW (Appendix E), and 
a derivation of the eigenvalue/eigenvector solution (Appendix F). 

Mr. James L. Hunt, of the High Speed Aerodynamics Division, Langley Re- 
search Center, Virginia, served as the NASA technical monitor for the program. 

At Grumman, the contract was administered by the Advanced Development 
office, under Mr. Fred Berger, Manager of Advanced Development System Engin- 
eering. The Study Manager was Dr. Kenneth A. Rathjen. 

Mr. Michael J. Rossi served as numerical analysis consultant for the pro- 
gram. Mr. Rossi developed the numerical method and the matrix subroutines pack- 
age under contract NAS l-11818, “Lateral Conduction Effects on Heat-Transfer Data 
Obtained with the Phase-Change Paint Technique, ” described in report NASA 
CR-2435 with co-author George Maise. Mr. Hunt also served as technical monitor 
for that program. 

Messrs. William Timlen and Charles Osonitsch were of considerable assist- 
ance in providing the appropriate aerodynamic heating functions. Mr. Timlen also 
gave important support by running Grumman’s TTAl computer code to obtain in- 
dependent checks on the CAVE code. Mr. Brian Martin developed subroutine 
X-24C. 

The many helpful discussions with Dr. Gianky DaForno are gratefully ac- 
knowledged. 
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i 
Section 2 

i f DESCRIPTION OF CAVE CODE OPERATION 

This section provides an overview of the CAVE code capabilities, input/output, 
and method of solution. 

CAVE has been designed with the convenience of the user in mind. Usual opera- 
tion of CAVE requires only the following elemental information from the user: 

0 Selection of one of the built-in configurations of Figure 1 or the general 
geometry option 

0 Specification of the surface emissivity and background radiation tempera- 
ture for problems involving radiation heat transfer 

0 Specification of the material density, specific heat and thermal conductivity 
(the latter two of which can be temperature dependent) 

0 Geometry-type information such as overall dimensions and grid network 
sizes 

0 Initial temperature distribution 

0 Flight trajectory, i. e . , altitude, velocity and angle of attack as functions 
of time in tabular form. This information is used by the code to predict 
the aerodynamic heat transfer coefficient, .h, and adiabatic wall tempera- 

ture, TAW as functions of time. Optionally the user may supply tables for 

h and TAW as functions of time and distance 

0 Specification of the time step intervals 

With the above information specified, the problem solution is accomplished in 
the following sequence by the code: 

1. Storage requirements for the various arrays are determined and allocated. 

2. The geometry is discretized into elements and the volumes, conduction areas 
and lengths are computed. (A unit depth is assumed by the code.) For the 
general geometry problem these quantities are input data. 

7 



Then for each time step the following are done: 

3. Using the temperature distribution at the start of the time step, the 

thermal properties of the materials are determined, followed by the 
capacitances and conductances for the network. This step is exercised 
just once if the material properties are independent of temperature. 

4. Using the flight trajectory data at the start and end of the time step, the 
code establishes the time average convective heat transfer coefficient 
at each surface node and the corresponding time average adiabatic wall 
temperatures. Appendix B gives the particular aerodynamic heating 

equations used. 

5. The convective heat transfer couplings, due either to aerodynamic heating 
or internal coolant flow, at each surface node are then determined by taking 
the product of the convective coefficient and the surface area. These coup- 
lings are then modified to account for radiation if it is being considered. 
Appendix C gives the details of the linearized treatment that is given to the 

radiation heat transfer. 

At this juncture we may visualize the code as being faced with the task of finding 
the solution to the following system of n first-order linear differential equations with 
constant coefficients : 

c dT. -=K 
i dt’ 

ij (Tj - Ti) + Hi (TAW, i - Ti) i = 1, n 

where Ci = thermal capacitance of node i 

Kij = conductive coupling between nodes i and j 

Ti = temperature of node i 

Tj = temperature of node j which is adjacent to node i 

Hi = convective coupling between node i and the fluid (for interior 
nodes H i = 0) 

t=time 

TAW, i = adiabatic wall temperature of the fluid in contact with node i 

Eq. (1) 

There are n such coupled differential equations, one for each of the n nodes. 



It may be interesting to digress for a moment to note that the usual thermal 
dT. 

analyzers take equation (1) a step further and replace the ordinary derivative -$- 

with a finite difference approximation. Depending on the form of the approximation 
either an explicit or implicit algorithm is obtained. In the common explicit and 
implicit formulations, the Tits and Tj’s are taken to be constant during the time step 
interval. In the current HAN method, the ordinary derivative is retained and the Tils 
and Tj’s are treated as time-dependent variables in Eq. (1). This leads to a more 
accurate solution with no limitation on the time step from a stability standpoint. 
However, in solving Eq. (1)) the HAN method treats the Ci, K.., Hi and TAW i as 11 
constants. This is necessary, as discussed in Appendix E, for an eigenvalue 
solution to exist. The technique used within CAVE to handle variations in these 
parameters is to subdivide the total time interval (i.e., the flight trajectory) and 
take these parameters to be piecewise constant within each time subinterval. 

Thus, the single problem of determining the temperature distribution in the 
structure for the entire flight trajectory where the boundary conditions are varying is 
solved by considering a number of subproblems where the boundary conditions are 
piecewise constant. These subproblems are interconnected in that the temperature at 
the end of one time subinterval becomes the initial temperature for the next time 
subinterval. It should be noted that the time subintervals, or time steps in the HAN 
method, are typically of the order of seconds or tens of seconds which is probably 
100 to 1000 times larger than is permissible with the explicit method. 

3, 

CAVE arithmetically averages the convective coefficient and adiabatic tem- 
perature at the beginning and end of the time interval. Therefore in selecting the time 
subintervals, the user should be guided by the variation in the flight trajectory with 
particular concern for abrupt changes that affect the convective heating. Assuming 
the flight trajectory table has been set up with these important points of change, time 
subintervals equal to those used in the flight trajectory table will very often prove 
satisfactory. For those problems in which the temperature dependency of the 
material properties plays a dominant role for some reason, or if radiation heat 
transfer is of great importance, a second run with smaller subintervals should 
be made to determine the effect of subinterval selection on the predicted tem- 
peratures. 
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The system of equations given in Eq. (1) has the following exact solution for a 
particular time-subinterval (refer to Appendix F): 

n 

Ti =T, + 
c 

C 
i 

ij ew (xj t, 
j=l 

Eq. (2) 

where 
Ti = temperature at node i at time t seconds into the time subinterval 

Tao = steady-state temperature at node i for the particular time subinterval 
i 

C . . = constants that depend on the Too 
1J 

, a set of eigenvectors of a matrix A, 
i 

and the temperatures of the nodes at the start of the time subinterval 

xj = the eigenvalues of a matrix A 

t = time into the particular time subinterval. If T represents the time in the 
flight trajectory, and if rs and ~~ represent the time at the start and 
end of a time subinterval, then the following relationships hold: 

05t<Te - T- and T = Ts + t for T,<t<r, 

A = symmetric matrix whose elements depend on the Ci, Kij and Hi of 
Eq. (1). (Refer to Appendixes A and F) 

Considering a thermal network with 100 nodes, there are then 100 eigenvalues and 

eigenvectors to be determined and used in Eq. (2). Considerable machine time can 
be saved by calculating only those eigenvalues and eigenvectors that are “significant” 
or “dominant” . This was noted very aptly by Maise and Rossi in NASA CR-2435 and 
used by them in the CAPE code for the inverse heat transfer problem of finding the 
boundary conditions given the temperature history. When the series in Eq. (2) is 
truncated to the “dominant” terms, we obtain: 

ne 

Ti = T, + 
c 

C 
i 

ij w (A jt) 

j=l 
Eq. (3) 
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where ne is a number substantially less than n. It represents the number of dominant 
‘eigenvalues and eigenvectors that will be found and utilized by the code. This is an 
input number decided upon by the user. Values of ne from 3 to 5 are recommended 
for most problems. Appendix A presents a discussion on this subject. 

With this background information, we are in a position to continue with the 
sequence that the CAVE code undergoes in finding the temperature history of the struc- 
ture throughout the flight trajectory. The next four steps involve matrix subroutines 
which for the most part were written and developed under contract NAS 1-11818 by 
M. J. Rossi. The sequence then continues from p. 6 as follows: 

6. Set up a matrix A in compact form which depends on the Ci, Kij and Hi of 
Eq. (1) (Refer to Appendix F). 

7. Obtain the ne dominant eigenvectors and eigenvalues of matrix A using 
Jennings* method of simultaneous vector iteration. 

8. Determine the steady-state solution to Eq. (1). 

9. Calculate the cij of Eq. (3) for i = 1, 2, . . . ,n and j = 1, 2, . . . ,ne. 

10. Calculate the temperatures of the nodes at the end of the time subinterval 

using Eq. (3). 

11. Set the initial temperatures for the next time subinterval equal to the final 
temperature of the present subinterval. Increment the flight trajectory 
time. 

12. Repeat steps 3 through 11 until the final time has been reached. The 
solution is then completed. 

The output from CAVE is for the most part self-explanatory and’will be reviewed 
in detail in the following sections when sample problems are considered. In essence, 
there are three sections to the output. First, there is a partial feedback of the input 
data, including: geometric parameters, material properties, flight trajectory, or 
convective heat-transfer coefficient and adiabatic wall temperature, as the case may 
be, and initial temperature distribution. Secondly, there are the node numbers, 
material numbers, capacitances and conductances that were calculated by the code 

*A. Jennings, “A Direct Iteration Method of Obtaining Latent Roots and Vectors of a 
Symmetric Matrix,” Proc. Cambridge Phil. Sot., 63, 196’7, pp. 755-765. 
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for each node. And thirdly, there are printed out for each time subinterval the time 
average heat transfer coefficients; heat transfer couplings and adiabatic wall temper- 
atures . Also printed out are Mach number, altitude, velocity, angle of attack and 
node temperatures at the end of each subinterval. As an aid to the user for a better 

feel of the problem being analyzed, the following items are also printed out: the 
steady-state temperature distribution for the time subinterval and the time-integrated 
heat input to each boundary node. 

Although CAVE has been designed to ,be most convenient for users interested 
in predicting structural temperatures of hypersonic vehicles, the code also proves 
convenient for analyzing the geometries given in Figure 1, subjected to other than the 
normal aerodynamic heating. The user may take advantage of the automatic division 
of these geometries by the code and supply the particular boundary conditions of his 
problem as input data. CAVE also proves a valuable code for analyzing geometries 
other than those given in Figure 1, i.e., whenever the time constant of the system is 
small compared to total time of interest. In this case, the HAN method of CAVE 

-offers significant machine-time savings compared to conventional methods. Sections 
3 and 4 consider in detail the built-in geometries and contain sample cases. Section 5 
discusses the general two-dimensional capabilities of CAVE. 
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Section 3 

) LEADING EDG-F GEOMETRY 

1 
3.1 DISCUSSION 

This section presents the leading edge geometry that has been incorporated into 
CAVE and discusses how this geometry is discretized into nodes by the LEAD4 sub- 
routine. * This section also presents the input data format for this geometry. 

Figure 2 shows the leading edge geometry that is tacitly assumed by subroutine 
LEAD4 when it generates a nodal network. The insulating layer can be eliminated, 
as can either one or both of the coolant passages, These eliminations are accom- 
plished very simply by using input values of zero for the insulation thickness and 
coolant passage radii. 

Figure 3 shows the grid network for the leading edge. The nose region is 
divided into elements by concentric arcs and rays. The wedge portion is divided into 
rectangular elements, except near the coolant passages where odd shapes are 
encountered, and near the centerline, where the elements are trapezoidal. The cal- 
culation of the node capacitances is a straight-forward matter and it is done exactly 
for all elements including the trapezoids. The calculation of the conductances is also 
a straight-forward matter except near the coolant passages where the conductances 
are approximated using an effective area and length between nodes. In regard to 
the approximation, the code requires that the following relationships be maintained 
(Fig. 3): 

Axl = RPl, radius of nose coolant passage 

Axi = Axi+1 = Axi+2 = $ RP2, where RP2 = radius of aft coolant passage 

(and so, for example, i = 4 in Fig. 3) 

*LEAD4 is an expanded version of LEAD, which is a subroutine for leading edges 
written by George Maise under contract NAS 1-11818 and reported in NASA CR-2435 
by George Maise and Michael J. Rossi. The expanded version can handle cooling 
passages and a layer of insulation applied around the leading edge. 
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FIG. 2 LEADING EDGE GEOMETRY 



\ ----=-- f - ‘- ’ 
1-L-l-l 



It is not necessary that the three AX’s associated with the aft coolant passage 

be numbers 4, 5, and 6; that is just how it worked out in Figure 3. If there is no 
nose coolant passage, then AX, can be arbitrary in size (but nonzero). 

The thickness of the insulating material is given by TAU and it may equal zero. 
Notice in Figure 3 that nodes are located at this interface between the two. materials. 
LEAD4 assumes that there are equal volumes of the two materials associated with 
each interface node. Meaning that one half of AT,, in this case, is associated with 
the insulator and the other half with the main material. 

The user may elect to have CAVE calculate the convective heat transfer coef- 
ficients and adiabatic wall temperatures around the leading edge, or he may supply 
tabular inputs for them. If the user elects the former option, then he supplies tabular 
values for the flight parameters of velocity, altitude and angle of attack as functions 
of time; moreover, he flags CAVE to use either the turbulent or laminar flow 

correlations, the details of which are presented in Appendix B. 

For leading-edge problems that involve increased heating due to local interfer- 
ence heating or some other effect such as plume impingement during a portion of the 
flight trajectory, the user may input two tables into CAVE. The tabular values are 

multiplicative factors which are position and time dependent. Values from one table 

are used to modify the convective coefficient on the top surface and values from the 
other table are for the bottom surface. A nonzero value for the input variable 

HMODI flags CAVE that this heating multiplier option will be exercised. For the 

normal run when the convective coefficient is not to be modified, HMODI equals 0, 
and the tables are omitted. 

In using this multiplier option, it is important to bear in mind that in modifying 

the convective coefficients, CAVE takes the average of the multiplicative factor at 
the beginning and end of the time interval and applies it over the entire interval. 
Therefore, the tables and computing time intervals must be selected with same care 

whenever step changes are to be simulated. A sample problem in Section 4 illustrates 

this. 
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The node numbering scheme for the leading edge geometry is interesting. A 
review of Figure 3 shows the following pattern: 

When we get to the sample problem, we shall see that the temperatures and 

other nodal properties are printed out in the following array form: 

f 

10 
20 
30 
40 
50 
6m 
70 
80 
90 

\ 100 110 
120 

13a 
140 
150 
160 
170 
180 
19. 
20e 
210 

22e 23e 
240 

25e 
26a 
etc. 

- 



Two observations can be made. First, the nodes along the top surface of the 

leading edge (numbers 1, 13, 25, . . .) are printed out as the first row of the array 

and the nodes along the bottom surface (numbers 12, 24, 36, . . .) are printed out 
as the last row. And, secondly, if the elements of the first column are rotated as the 

arrows indicate, the array gets rearranged into something looking somewhat like the 
nodal arrangement within the leading edge. With a little experience, the user of 

CAVE is able to quickly scan the output and get an immediate feel for the temperature 
gradients within the leading edge. 

The following subsections present the input data format for leading-edge problems 
as well as for a sample problem. 

3.2 INPUT DATA FORMAT FOR LEADING EDGE GEOMETRY 

Indexes Card 

0 JGEO, L, M, NE* 
JGEO = 1 (selects leading edge geometry) 
L = number of elements through the material (must be an 

even integer) 
M = number of elements along top (or bottom) half of 

leading edge 
NE = number of dominant eigenvalues to be used in solution 

(e.g., a typical number is 5) 

Title Card 

0 Run identification, comments, etc. 

Radiation Card 

(415) 

(5AlO) 

0 EPSl, TBGl 
EPSl = emissivity of surface 
TBGl = background radiation temperature, “R 

(2FlO. 5) 

*The product L x M equals the total number of nodes. The current dimension 
statements in CAVE require that L x M 5200 and that M 5 25 for the leading edge 
geometry. 
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Material Prooerties Cards 

0 MAT (15) 
0 NMATl, RHO& CONAVl, CPAVl (110,3FlO. 5) 

0 TMATl, TMATl(B), . , . , TMATl (NMATl) 

I 

omit (8ElO.O) 

0 CONDTl(l), CONDTl(B), . . . , CONDTl (NMATl) if (8ElO. 0) 
0 CPTl(l), CPTl(B), . . . , CPTl (NMATl) NMATl=O (8ElO. 0) 

(If MAT = 2 include the cards:) 

0 NMATB, RH02, CONAVB, CPAVZ (110.0,3F10.5) 
0 TMATB( l), TMAT2(2), . . . , TMATB (NMAT2) 

I 

omit (8ElF. 0) 
0 CONDTB(l), CONDT2(2), . . . , CONDTB (NMAT2) if (8ElO.O) 
0 CPTB(l), CPT2(2), . . . , CPT2 (NMATB) NMATB=O (8ElO. 0) 

MAT = number of materials (1 or 2) 
NMATl = number of entries in properties table (maximum 

of 10). NMATl = 0 for constant properties 

RHO1 = density of material 1, lbm/cu-ft 
CONAVl = average thermal conductivity of material 1 (used 

when NMATl = 0), Btu/ft-set-” R 
CPAVl = average specific heat of material 1 (used when 

NMATl = 0), Btu/lbm-“R 
TMATl (I) = temperatures in thermal properties table for 

which CONDTl (I) and CPTl (I) are given; 
I = 1, 2, . . . , NMATl, “R 

CONDTl (I) = thermal conductivity of material 1 at temperature 
TMATl (I), Btu/ft-set-” R 

CPTl (I) = specific heat of material 1 at temperature 
TMATl (I), Btu/lbm-” R 

NMATB, RH02, CONAVB, etc., same as NMATl, RHOl, CONAVl, etc., 
except applied to material 2 
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Detail Geometry Cards 

0 MCAP, THETA 
0 DEIX(l), DELX(2), DELX(3), . . . , DELX(MM) 
0 DELR(l), DEIR(2), DELR(3), . . . , DELR(L/B) 
l TAU 
0 RPl, RP2, S, HCOOLl, HCOOLB, TCOOLl, TCOOLB 

MCAP = number of elements into which nose of leading edge 
is subdivided (must be an even integer) 

THETA = wedge half angle of leading edge, in degrees 
DELX(1) = spatial increments in x direction I=l, 2, . . . , MM 

(where MM = M - MCAP/B), ft 

(110, FlO. 5) 
(8FlO. 5) 
(8FlO. 5) 

(FlO. 5) 
(7FlO. 5) 

DELR(1) = spatial increments in radial direction 1~1, 2, . . . , I,/2 
TAU = thickness of material 1, ft (when considering only one material, 

TAU = 0) 
RPl = radius of nose coolant passage, ft 
RP2 = radius of aft coolant passage, ft 
S = distance between coolant passage centers, ft 
HCOOLl = convective heat transfer coefficient inside nose coolant 

passage, Btu/ft2-set-OR 
HCOOLB = convective heat transfer coefficient inside aft coolant 

passage, Btu/ft2-set-OR 
TCOOLl = nose coolant temperature, o R 
TCOOLB = aft coolant temperature, “R 

Initial Temperature Cards 

0 KODE, I, T(I), II, JJ 
0 . . . 
0 . . . 
0 . . . 
0 11100 (indicates end of initial temperature cards) 

KODE = 0 or blank 
I = node number 

(215,E10.0,215) 

(15) 
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T(I) = node initial temperature, “R : ,I .I -1 
II and JJ= the node number is incremented by the spacing JJ until ,; 

the limit II is reached. Each node so specified is :I 
assigned the same temperature 

Wing Angles Card 

0 SWEEPA, DIHEDA, CODEX, HMODI, TURBL 

SWEEPA = wing sweep angle, in degrees 
DIHE DA = wing dihedral angle, in degrees 
CODEX = 0. for convective coefficient and adiabatic wall 

temperature computed by CAVE; = -1. for tabular 
input of coefficients and temperatures 

HMODI = nonzero value indicates that two tables will be 
read at the end and used to multiply the 
convective coefficient 

TURBL = 0. for laminar flow, = 1. for turbulent flow 

/: 

(5ElO. 0) 

Air Properties Card (omit when CODEX = -1.) 

0 GAM, RGAS, PR (3E 10.0) 

GAM = ratio of specific heats of air 
RGAS = gas constant for air, ft-lbf/lbm o R 
PR = Prandtl number of air 

Flight Trajectory Cards (omit when CODEX = -1.) 

0 NTRAJ (110) 
0 TIMTAB( TIMTAB( . . . , TIMTAB(NTRAJ) (8ElO.O) 
0 ALTTAB(l), ALTTAB(B), . . . , ALTTAB(NTRAJ) (8ElO.O) 
0 VELTAB(l), VELTAB(B), . . , , VELTAB(NTRAJ) (8ElO. 0) 
0 ALPTAB( 1) , ALPTAB( . . . , ALPTAB(NTRAJ) (SElO, 0) 

NTRAJ = number of points in trajectory table (2 < NTRAJ 150) 
TIMTAB(1) = time in trajectory table I=l, 2, . . . ,NTRAJ, set 
ALTTAB(1) = altitude corresponding to time TIMTAB( ft 
VELTAB(I) = velocity corresponding to time TIMTAB( ft/sec 
ALPTAB = angle of attack corresponding to time TIMTAB must be 

non-negative, degrees 



Convective Coefficient and Adiabatic Wall Temperature Cards (omit when CODEX = 0.) 

The input format for these four tables is described under subroutine NURED 
given in Appendix D, Sheet D-l. (Note that in the structure of these tables time is 

considered argument 1 and distance argument 2. ) 

Table of convective coefficient as a function of time and distance along 
top of leading edge 

Table of adiabatic wall temperature as a function of time and distance 
along top of leading edge (note that the tabular entries of this table for 
time and distance must be identical to those of the above table) 

Table of convective coefficient as a function of time and distance along 
bottom of leading edge 

Table of adiabatic wall temperature as a function of time and distance 
along bottom of leading edge (note that the tabular entries of this table 
for time and distance must be identical to those of the above table) 

Blank card (terminates table read in) 

Time Intervals Cards 

0 NTIMES W) 
0 TIMES(l), TIMES(B), . . . . . . TIMES (NTIMES) (8ElO. 0) 

NTIMES = number of points in time intervals array (2sNTIMES550) 
TIMES(l) = initial time (usually equals 0. ), set 
TIMES(I) = time at which temperatures will be calculated and 

printed out I = 2, 3, . . . , NTIMES, set 

Convective Coefficient Modification Tables (omit when HMODI = 0.) 

Two tables are required to modify the convective heat transfer coefficient 
(see p. 14). The first table gives the multiplicative factors for the top surface of the 
leading edge; the second table gives the factors for the bottom surface. Time is 
considered argument 1 and distance argument 2. The writeup for subroutine 
NURED, Appendix D (Sheet D-l), gives the specifics on the format requirements. 

Follow these two tables with a blank card; omit the blank card if the tables are not 
read in. 
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3.3 -’ SAMPLE PROBLEM FOR LEADING EDGE GEOMETRY 

This subsection contains an illustration of the leading edge geometry consideie 
as a sample problem (see Fig, 4). The main features are that it is made of berylliu 
has a nose radius of 0.52 cm and is cooled internally via nose and aft coolant passage 
The trajectory is one of a missile with a maximum Mach number of six. 

Reference to the listing of the input data (see Sheets 3.3 on p. 24) shows the 
time step intervals used. in this problem were: 0 to 10, 10 to 20, 30 to 40.4, 40.4 to 
80, and 80 to 120 seconds. Smaller time steps were used in the beginning because 
the trajectory is changing more rapidly then. It should be noted that for a problem 
such as this one where radiation is neglected and the thermal properties are conside 
ed constant, it is possible to use one single time step to cover any portion of the 
trajectory with constant flight parameters. Specifically, since the flight parameters 

velocity, altitude, and angle of attack are constant from 40.4 to 120 seconds, it 
would have been possible to use the single interval 40.4 to 120 in lieu of the two 
-intervals 40.4 to 80 and 80 to 120 seconds. For laminar flow where the convective 

coefficient is independent of wall temperature, CAVE would calculate the same 
temperatures at time 120 seconds either way since the boundary conditions and 
properties are constant throughout the interval. The 80 second point was introduced 
here so as to obtain a printout of the temperatures at this time for plotting purposes 

The following pages show listings of the input data and the output generated 
by CAVE for this leading edge problem. The sequence of the output is: 

Statement regarding storage allocated for S array in main program 

Geometry related input data 

Node numbers adjacent to exterior boundary, nose cooling passage and 
aft cooling passage 

Material properties 

Trajectory table 

Node number location within output array 

Material number assigned to each node. (In this problem there is only on: 
material being used. ) 



;‘I 

0 The capacitance of each node 

0 The conductance in the x-direction between nodes 

0 The conductance in the y-direction between nodes 

0 Initial temperature distribution 

And then the following information is printed for each time interval: 

Flight trajectory parameters, Mach number, altitude, velocity, and 
angle of attack at the end of the time interval 

Average heat transfer coefficients calculated using the h values at the 

beginning and end of this time interval 

Average heat transfer couplings, which include radiation effects, if any, 
calculated using the temperatures at the beginning of this time interval 
(See Appendix C) 

Average adiabatic wall temperatures for this time interval 

Temperatures at the end of the interval 

Steady-state temperatures for the heat transfer couplings and adiabatic 
wall temperatures of this interval 

Integrated heat input to each node. This gives the net heat transfer 

at each boundary node up to the end of this time interval 

(Annotation has been added to the input and output to aid the reader.) 
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*NOT TO SCALE 

BERYLLIUM 

k = 138.2 j/m-see-k 
Cp = 1251 j/kgm 

,"R 
= 1826 kgm/m3 

NOSE = 0.523 cm 

FIG. 4 GRID NETWORK+ FOR MISSILE LEADING EDGE WITH COOLING 
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.02 .I*020 .02 .O, r20. 440. 
4hO. 120 ‘I-d 
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SHEET 3.3 INPUT DATA FOR LEADING EDGE PROBLEM (REFER TO FIG. 4) (SHEET i OF 8) 



l t*************,****** 

TOTAL NO. OF : CAVE C”OE : 
NODES ON SURFACE 

J 

:********t***********: 

40 SllRFlCE ELFMFNTS-- 0 R”l5 RI 20 C”LllYNS 
No. F NooES 

GIVES 

N%OF EIGENVALUES NE 
120 ELEYEHTS 3 I)DM,NANT Yl-lDES...RFOuIRES 5,“P ““ROS OF YEMOW 

F~“N”~“u,ZF:...~,Fn,lCE n*YF.NSIoN I-IF s AND VALIIE OF YY”rm5 FROM I “o.clJB TI,**R”s 554*+--VALUE REQUIRED FOR THIS PROBLEM 
-VALUE REQUESTED IN CAVE ********t*~******************************************************~****************************************************** 

Qllhl 125.3 IL.E. WITH COOLING~-COMMENT CARD 

L E A ” I N G EDGE PFfORLEM 

N”5E Dl”,lls= O.,7,f,F-0, FT 
LENGTH OF WFI-IGE SFCTl”N= 0.32-3*E 00 FT 

THFT.= O.IOOOE 02 DEG 
T.,I= 0.0 I=, 

EYISS,“ITI= 0.0 
RA”,AT,“N R.CKGr)“IIND T= 0.0 0EG.R 

Rln,“S “F NOSF CO”L,NG P.SSACE= 0.3&32E-02 FT 
llDSF COOL~HT t-t= 0.2000E-0, RTU,SEC-FT**2-DF6.R 
NOW C”“L.NT T= 0.420OE 03 “EG.R 

arnlw3 PF AFT C”“LANT P*SSAGE= 0.2000E-0, FT 
AFT COOLANT Hn O.,OOOE-01 BTU;SEC-FT**2-DEG.R 
AFT C”“C.NT T= O.&.“OE 03 l3EG.R 

SHEET 3.3 OUTPUT DATA FOR LEADING EDGE PROBLEM (REFER TO FIG. 4)bHEET 2 OF 8) 



YATERIAL PROPERTIES AVERAGE 
YATFRIAL 1 n”“=1,4.00 LoY/Cu-FT ~=0.02220 BTU/SEC-FT-OEG.R CP=O.5340 RTU/LOLI-DEG.R,MA~~~,~~ PROPERT,ES 

*****+**,*************************************************************************************************************** 

TARLES 
T,ME IN SFC”NDS 

0.0 

A’LTITtlnE 

0.2000E 02 0.3OOOE 07 o..oaoF 02 0.1200E 03 

IN FFFT 

o.d4noF 05 0.5227E OS O.f=a”‘F OS o.‘aooF 05 
“FL”C,Tl 14 FFFT PFR SEC. o-7400E O5 FLIGHT TRAJECTORY 

0.2904= 0.3 O.d453E da 0.507RE 04 o.s*.a,C 04 “.5”41E 04 ANGLE “F ATTICK IN nEGw=FS 0.0 0.0 0.0 0.0 0.0 I 

*********~******t+*t*********.****************************************************************************************** 

“STAGNATION 
1 J 2 

1.” 
2.0 ::: 

3.0 4.0 1;:: 
5. 1l.C 
h.0 12.0 

II 12 
6, .” h7.0 
62.” 6H.O 
h3.0 69.0 
64.0 70.0 
hci.0 71.0 
hh.0 72.” 

POINT” NODES 
_I 

i3.0 
lb.0 
15.0 
Ih.0 
17.0 
IR.0 

13 
73.0 
74.0 
75.0 
7h.O 
77.0 
,*.0 

SURFACE NODES ALONG 
7 R 
37.0 43.0 
38.0 44.0 
39.0 15.0 
00.0 bh.0 
41.0 47.0 
42.0 

n 
an.0 

17 1n 

MATERIAL I USED THROUGHOUT HATER,*L N”M*CR AT FACH NOnE 
an* / C”L 1 3 & 5 6 7 1 

i:% . 

2,,d . 1.0 1.0 . 

: ::: ::: ::: :.“o . 

. 

:.“o . ::“, I.0 

: :::: :-: . :‘: 1.0 :.: :.: I.0 ::: 
.o.” 1 .o / cm 11 12 1.0 !:i * 1:o I .O 1.0 13 14 15 16 1, I.0 

1 
: I ::o” .o 

1.0 1.0 . 
1.0 1.0 1.0 1.0 1.0 ::: ::: i:i :.: 

4 ::?I 1.0 1.0 1.0 ::: 1:o ::: 

5 1.0 1.0 6 1.0 1.0 i-0” . :‘: . :.: . 1.0 ::: 

BOTTOM SURFACE 

i03.0 i6s.n 
104.0 I,"." 
105.0 III." 
100.0 112.0 
107.0 113." 
IOR. 114.0 

R 9 
I.0 I." 
I.0 
1.0 ::: 
1.0 1 .O 
I.0 L.0 
I .O 1 .O 

18 19 
1 .O I .O 
I.0 1.0 
::: 1.0 

I.0 
1 .o 1 .O 
1.0 1.0 

10 5s.n 562.0 57.” 5R.O 59.” 00.0 ,” . 
115.” 
Ilh.0 
117.” 
llR.0 
119.0 
I?“.” 

10 
1.0 
1.” 

:-:: . 
I.” 
1.0 

20 
1.0 

:?I . 
1.” 
1.0 
1.0 

SHEET 3.3 OUTPUT DATA FOR LEADING EDGE PROBLEM (REFER TO FIG. 4)(SHEET 3 OF 8) 



9 
O.,l,E-“3 
cl.‘o3E--02 
O.R7PE-03 
0.872E-“3 
O.,b,E-02 
0.717E-03 

19 
0.636E-cl2 
0.167E-0, 
0.130E 00 
0.130E no 
0.,6-E-0, 
O.R3hE-“2 

10 
".4,W-02 
0.83hE-"2 
O.l,XF-"1 
".1,2F-01 
0.036F-02 
0.4,RF-02 

80 
O.R36F-01 
Ll.l67E-01 
0.147F 00 
".,47F 00 
C.lb,F-01 
"..53hE-02 

O.lh-?E-01 
0.7*E-“, 
cl.,RTE-cl, 
O.lh-TE-01 
O.“llhE-02 

O.&-“2 
0.130E-“1 
0.104E-“1 
0.104E-0, 
0.130E-cl, 
O.bSDE--02 

,.‘9&3, 
0.3A,E-02 
0*29hE-0, 
0.296E-0, 
0.381F-02 
O.lQOE-02 

10 
“.3A,E-07 
l-l.,62F-03 
O.A~OF--02 
Cl.R4”E-02 
O.,h2F-“2 
0.3R,F-07 

2” 
0.0 

o.m4i-0, 
O.A”PE-0, 
“.RR2F-Cl, 
O.ABilE-Ll, 
O.RAFE-0, 
D.ZR4E-01 

17 
0.7&i-02 
0.571E-cl2 
0.?9hE-0, 
0.19hE-01 
D.S71F-02 
“.3RhE--02 

ZERO VALUES SINCE NODES ARE 
_1 rAOJACENTT0 COOLINGPASSAGE c 7 

ZERO VALUES SINCE THERE ARE 
NO NODES TO THE RIGHT OF THESE F)FCT,“N 

0.759~~02 
O.353E-02 

:::S,E-02 
0.759E-02 
Cl.0 

o.,,;,’ 00 
0.172F 00 
0.30.E-01 
0.172E 00 
0.129E 00 
0.0 

0.759RE-02 9 10 
O.,l,E-0, “.64,F-0, 

0.353F-02 0.109E-0, O.R62F-0, 
:%F-W 0.0 “.38x=-“’ 

O.109E-0, O.R6,PE-0, 
0.759E-02 O.h4,F-0, 
0.0 :*A”E-o’ . 0.0 
o.,,;,” 00 Cl.12 2” 00 

0.129E 0” 
0.172E 00 0.172E 00 “.172F no 
O.,O4E-0, O.“9OE-02 0.700E-02 
0.172E 00 O.,72E 00 “.172C 00 
O.,29E 00 

00*A29E -lo 
O.,29E DO 

lES;oyo-o 

0.759;-02 
0.35x=-02 

:25X-02 
0.75QE-02 
“.rJ 

11 
O.h.,E-0, 
O.“WE-0, 
0.23”E-0, 
0.t362E-Cl I 
0.6.7E-01 
0.0 

” 
0.7=,9E-02 o.,s?;-07 
0.353E-02 0.353E-08 

::kE-02 :::53E-W 

:a075qF-02 
0.,59E-02 “.759E-OP 

. 0.0 0.0 

o.,zE 00 
1s 

0.431E-0, 
O.,7PE 00 

;.:d~ “,; 

O.i?ORE-0, O:,SSE-O, 
“.,3,E-0, 
0.0 t 

0.172E 00 0.172E 00 “.131E-0, 

00-t129E O0 
0.129E 00 O.93,E-0, 

. 0.0 0.0 

1 
0 

0.759E-02 
O.X,E-02 

:::5,,-02 
0.,59E-02 
0.0 

0.43:~~0, 
0.169E-0, 
0.0 
O.l69E-0, 

:*z3’E-o’ . 

0.759E-Cl2 
0.353E-02 

,“:.$,,E-02 
0.759E-02 
0.0 

17 
o.n3ii-al 
O.,3,E-0, 
0.0 
0.131E-0, 
O.a3,E-0, 
0.0 

ZERO VALUES SINCE THERE ARE NO NODES BELOW TH 
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W  
0 

****+*+***************************************************************************************************************** 

J FIRSTTIMESTEP 
l **t* T , M  E =  O.,O”OE “2 5 E C 0 N 0 S *f*** 

XYACH- 3.““” *LT,Tu”E= 00136.5 VELOCITY= 367”.76 ANGLE OF ATTACK:= 
FLIGHT CONDITION AT 

o’“-TIME 10  SECONDS 
AVERAGE HEbT TPINSFFT1 C”EFF,C,ENTS RTI,/SEC-FT**2-nEG.R / 

NOSE COOLING PASSAGE /AVERAGE OF H ATTIMES 0  AND 10  
rtnr / C”L  1  2  

: 
0.765E-01 “.737E-0, “.&-01 0.1232-01 
0.” 0.0 

: 
“.POOE-0, “.*““E-“* ::~OOE-O, 0.0 

0.2”“E-0 I 
“.200F-0, 0.2OOE-0, “.200E-0, “.P”OE-0, “.20”E-0, 

5 0.0 0.0 
::kE-0, 

0.0 
“.489E-“1 kY83E-01 

10 .Q”Z , C”L 
“.7hEIE-0, 0.737E-0, 

0.9&-“2 
12 

: 0.0 Fl-:23E-oZ 
3 0.” 0:0 

: 0”::: ,“:: 
h  “.9h,E-“2 O.A23E-02 

o.h77:-01 0.0 
O.ZO”E-“I 
“.2OOE-0, 
0.0 
O.h77E-“1 

13 
0.706E-“2 
0.0 
0.0 

::: 
“.7”6C-02 

a.&-02 0.0 0.0 0.0 “,l”OE-01 
. 

i.: 
O.IOOE-01 

0.6-zRE-02 
f 

k&9,-02 

AFT COOLING PASSAGE 
.R 
a.,&0, 0.142-03 0.0 0.0 
“.120E-00 “.120E-04 “.,20E-04 “.120E-04 . i .?77E-03 :::47E-“3 

h 
“.37”E-01 

::~OOE-Ol 
“.200E-01 
0.0 
O.X,.,E-01 

16 
“.571E-“2 
0.0 
O.IOOC-01 
“.l”OE-01 

:::7, E-02 

0 ,50:x a:0 
“.20”E-“1 
“.2OOE-01 
0.0 
“.P54E-0, 

a.,&-02 
0.0 
“.,““C-01 
0, ‘““E-01 
0.0 
O.SShE-02 

a.,&“I 
: :~OOE-O, “.200E-01 
:::,,E-01 

18 
0.52RE-“2 

t:: 

i:: 
0.57RE-02 

0.09%-02 
0.0 
0.0 

::: 
“.493E-“2 

1” 
“.,‘,E-01 
0.” 

,o:: 
0.” 
O.,l,F-“1 

“.~h:~-o, 

ii:: 

i:: 
“.464F-02 

HEAT TRANSFER COUPLlNGS 
1 

“.229E-03 
0.0 
0. ,2OE-04 
O.,20E-04 
0.0 
“.229E-03 

I 1  
O.Mii-0, 
0.0 

2: 

O.&-O, 
0.0 
0. ,20E-04 
O.,2OE-04 
0.0 
0.221E-03 

0.32~~-03 
0.0 

t: 

00:LE-o, 

BTU/SEC-“E 

0.203:-03 
0.0 
0.12OE-04 
“.120E-oa 
0.0 
“.803E-0, 

“.2R::-o, 
0.0 

::: 
0.0 
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NOTE VARIATION OF TAw AROUND LEADING EDGE 
FT COOLANTTEMPERATURE 

A”EIAGE A”,A”AT,C WALL TEMPERATVRE “EG.R 

I”* / C”L IA.7 2 12:2.0 . A ‘2”,5.0 ‘2L5.2 7 
: 

1’“,7.2 I’“,%” 
0.0 1299.CI 0.0 0.” 1280.4 0.0 0.0 0.0 s220.5 0.0 0.0 0.0 

TFMPERA 
‘“Y , cm 

: 

: 
5 

1°C / C”L 

: 
3 

: 
A 

TUFZES ^: TH’S T’YE “EG.R 2 
h.l.7 6.0.. 
h27.1 
h15.h a 

026.3 
615.2 

615.6 6515.2 
62-I. I flZh.3 
h.l.7 6.0.. 

&:y STAG. &: 
;;z*," PT. Sl5.1, 

552: 1 515.3 516.5 
950.0 518.2 

NOSE COOLANT 
TEMPERATURE 

3 4 
637.8 h39.2 

62..9 614.4 z::.,” . 
h,... h,3.2 
OR..9 
637.h % ‘Z 

- 13 1. 
094.4 OR3.9 
492.9 4b2.h 
r92.0 481.0 
492.0 re1.9 
493.0 &RP.R 
494.4 dR4.I 

lij2.9 
1072.6 
1072.3 
1072.3 
1072.5 
1072.9 

AFT COO6NTTEMPERAT"RE 

CA.7 
620.2 
611.6 
611.6 
h20.2 
h29.7 
15 
.“1.7 
480.6 
470.5 
678.8 
480.9 
4Rl.9 

h 
124.7 
617.1 
609.8 
609.e 
617.1 
629.7 

:“,a., 
478.9 
476.h 

,476.Q 
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z .RO.,- 

7 
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h13.R 
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013.” 
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::,., 
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WNOTE LACK OF PERFECT SYMMETRY - CAU&I By NUMERIC! 
AND USE OF ONLY DOMINANT EIGENVALUES 

7 R 9 I" ,R 
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409.6 
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1::5.?J 
0.0 
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0.0 
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,:“,,.tl 
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0.0 

1 lR5.0 
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W  
N 

XYACH- 4 .hOO ALT,TllnE= ~2273.0 “EL”C,TI= 4.5-4.2. .NGLE “F ATTACK- 0.” 

POSITIVE VALUE 
INDICATES HEAT ‘GAIN ***** T  

NEGATIVE VALUE 
INDICATES HEAT LOSS 

1 M  E =  O.*“OOE “2 5 E C ” N D 5 tttt* -NEXTTIME STEP 

A”FR4GF HFAT T!?ANSFFQ Ct-lEFFIClENTS RTII/SFt-FT***-“EC.9 
R”Y / CllL I 

: 
“.RZ.F-“1 0.793:-n, 
“.” 0.0 

;.;*,:-a, o.h3l;-ol 
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0.200F-01 “.200E-01 - “.200F-01 ~:~o”E-o 1 
“.i?O”E-a, “.2”OE-01 “.2”OF-01 “.200E-01 

2 
0.0 0.0 0.0 0.0 
“.RZ.F-*, “.793F-“1 O.,ZhE-0, O.h7,E-01 

anv / C”L ‘I 12 13 
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2  
I:; 

0”::: 
::“, i.: 

. 0.0 0.0 
5 0.0 . 0.” 
h O.R‘32E-02 :.;Z.E-02 “.h94E-02 
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STEAMY-STATF TFYPFRATURFS F”R 7°F A”,,N”AC?Y C”hlD,T,“NS AT THIS TIME DEG.R (TIME IS 120  R”W  , cm 
*A.0 &. ; ,.Z,.O 
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*A, 
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P.4R.3 X.39., 7434.4 d”., &.n 
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Section 4 

COOLED PANEL, SLAB AND X-24C STRUCTURE 

4.1 DISCUSSION 

This section discusses the input data format and definition of variables for the 
three geometries of cooled panel, slab and a structural arrangement referred to as 
basic X-24C structure. These geometries are shown in Figures 5 through8 which give 
the overall dimensions that are input to CAVE and the type of boundary conditions 
associated with the geometries. For the cooled panel, there are two types of corners 
that can be analyzed: square and round (see Figs. 5 and 6). 

The top surface of each of the three geometries experiences aerodynamic 
heating. The user may elect to have CAVE calculate the convective heat transfer 

coefficients and adiabatic wall temperatures, or he may supply tabular inputs for 

them. If the user elects the former option, then he supplies tabular values for the 
flight parameters velocity, altitude and angle of attack as functions of time. 

In calculating the aerodynamic heating, CAVE assumes the boundary layer 

flow is processed through an oblique shock whenever the top surface is moving at 
speeds in excess of Mach 1 and at an angle of attack relative to the freestream 
conditions. Subroutine TRANS establishes whether the flow field is laminar or 
turbulent based on a transition criterion (see Fig. B-l, Appendix B). The details 

of the aerodynamic heating equations that are used are given in Appendix B. 

Depending on the orientation of the geometry with respect to the boundary 
layer flow, the convective coefficient may vary with X (flow is from left to right in the 

plane of the paper) or be independent of X (flow is into plane of paper). Both condi- 
tions can -be handled by CAVE. Setting the input variable CODEX equal to 1. selects 

the former situation, while CODEX equal to 0. selects the latter. When the convective 
coefficient is to be considered varying with X, the user must input a nonzero value for 

REFX which represents an effective boundary layer length to the left edge of the 
geometry (Refer to Appendix B). 
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As cited previously, an option exists to input directly the convective coefficient 
and the adiabatic wall temperatures as functions of time and X in lieu of the flight 
trajectory parameters. This optional feature is valuable for predicting temperatures 
within structural members subjected to other than the usual aerodynamic heating. 
The forcing functions for such special heating effects as caused by body shocks 
intersecting the wing, separated flow regibns, wing-body interaction and engine 
exhaust plume impinging upon the structure can be calculated external to the code and 
then supplied as input data to the code. CODEX is set equal to -1. to exercise this 
option and the flight trajectory is not input. 

An additional option exists to modify the convective coefficients by multiplicative 
factors which are position and time dependent. (This would be useful in accounting for 
shock impingement heating.) The factors are entered as a table. A nonzero value for 
the input variable HMODI flags CAVE that this heating multiplier option will be exer- 
cised. For the normal run when the convective coefficient is not to be modified, 
HMODI equals 0. and the tables are omitted. 

This modification option can be exercised whether CAVE calculates the original 
or unmodified convective coefficients, or if they are input to CAVE. 

Subroutine SLAB2 discretizes both the cooled panel and slab geometries into 
nodes and calculates the associated capacitances and conductances. Subroutine 
X-24C discretizes the X-24C geometry. 

Figure 9 shows the grid network generated within SLAB2 for the cooled panel 
geometry of Figure 7. The network is generated based on the input dimensions Sl, S2, 
Wl, W2, W3, TAU, HEIGHT, and on the AX’s and AY’s (which can all be different). 
+AU represents the thickness of the insulating material which may equal zero. 
Notice that in Figure 9 nodes are located at the interface between the two materials. 
SLAB2 assumes that there are equal volumes of the two materials associated with 
each interface node. This means that one half of AY3, in this case, is associated 
with the insulator and the other half with the main material. 

Figure 10 shows the grid network generated for the cooled panel with round 
corner (see Fig. 6) based on the above input dimensions plus R, the inside radius of 
the corner. 

39 



l 

. . 0 

l l . 

l 0 . 

l 

I 
ADIABATIC COOLANT 

PASSAGE l 

i- 

l 

l 

-13 -29 -45 
I - A - I - I 

J 
l 

l 

l 

I 
- 

FIG. Q  GRID LAYOUT FOR COOLED PANEL (SQUARE CORNER) 

40  



COOLANT 
PASSAGE a4 010 0120 

138 

l--H a5 ~03 l 13 
121 

ADIABATIC 

FIG. 10 GRID LAYOUT FOR c00L~0 PANEL (ROUND CORNER) 

41 



The convective heat transfer coefficient and the temperature of the coolant are 
input values. They are constant for the trajectory and may be input as zero, in which 
case the surface of the coolant passage is taken as being adiabatic. 

Figure 11 shows the grid network generated within SLAB2 for the slab geometry 
of Figure 7. The network is generated based on the input values for the AX’s and AY’s 
(which may all be different). Aerodynamic heating takes place on the top surface and 
is handled just as in the cooled panel geometry. The other three sides of the slab are 
taken to be adiabatic. Slab geometry is handled very much the same as cooled panel 
geometry. The input card for Sl, S2, Wl, etc., associated with the dimensions of 
the cooled panel is left blank for the slab ; in other cases, the required input informa- 
tion is the same. 

A review of Figure 8 shows that the X-24C geometry introduces a feature not 
embodied in any of the other geometries - contact resistance between materials. The 
X-24C geometry can be viewed as having 5 components with a total of 4 interfaces be- 
tween them. The unit surface contact resistances at the 4 interfaces are inputs to 
CAVE. Figure 12 gives the grid network generated within subroutine X-24C for the 
geometry given in Figure 8. It can be seen that nodes are located at the interfaces 
between components. The precise location of a node st an interface is in the upper 
component as the full contact resistance is applied to the conduction coupling between 
the interface node and the node below it. As with all the other geometries, the user 

must input the AY’s such that the interfaces are mid-way within a AY spacing. 

Another new feature to the X-24C geometry is that up to three materials can be 
involved in the structure instead of the usual two. There is no limitation on the 

arrangement of the materials among the five components. The thermal conductivity 
and specific heats of the materials can be constant or temperature dependent. 
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4.2 INPUT DATA FORMAT FOR COOLED PANEL AND SLAB GEOMETRIES 

Indexes Card . 

r 

’ 

l JGEO, L, M, NE* (415) 
JGEO = 0 (selects slab or cooled panel geometry) 
L = number of elements through the material 

M = number of elements along top 

NE = number of dominant eigenvalues to be used in 
solution (e. g. , a typical number is 5) 

Title Card 

0 Run identification, comments, etc. (5AlO) 

Radiation Card 

0 EPSl, TBGl 
EPSl = emissivity of surface 
TBGl = background radiation temperature, “R 

Material Properties Cards 

(2FlO. 5) 

0 MAT (15) 
0 NMAT, RHOl, CONAVl, CPAVl (110,3FlO. 5) 
0 TMATl(l), TMAT1(2), . . . , TMATl(NMAT1) omit (8ElO. 0) 
0 CONDTl(l), CONDTl(B), . . . , CONDTl(NMAT1) if (8E 10.0) 
0 CPTl(l), CPTl(Z), . . . , CPTl(NMAT1) NMAT1=o (8E 10.0) 

(If MAT = 2 include the cards:) 

0 NMATB, RH02, CONAVB, CPAV2 (110,3FlO. 5) 
0 TMATB(l), TMAT2(2), . . . , TMATB(NMAT2) omit (8E 10.0) 
0 CONDTB(l), CONDT2(2), . . . , CONDTX(NMAT2) if (8E 10.0) 
0 CPT2(1), CPT2(2), . . . , CPTB(NMAT2) NMAT2=o (8E 10.0) 

*Current dimension limitations require that the product L x M not exceed 200 and 
that M not exceed 50. 
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MAT 
NMATl 

RHO1 
CONAVl 

= number of materials (1 or 2) ‘. ,’ 
= number of entries in properties table, , 

(maximum of 10) NMATl = 0 for ’ 
constant properties 

= density of material 1, lbm/cu-ft 
= average thermal conductivity of material 1 

(used when NMATl = 0), Btu/ft-set-“R 

‘. 

CPAVl = average specific heat of material 1 (used when 
NMATl = 0), Btu/lbm-Si. 

TMATl(I) = temperatures in thermal properties table for 
which CONDTl(1) ‘and CPTl(1) are given; 
I=l, 2 , . . . . NMATl, “R 

CONDTl(1) = thermal conductivity of material 1 at 
temperature TMATl(I), Btu/ft-set-“R 

CPTl(I) = specific heat of material 1 at temperature 
TMATl(I), Btu/lbm-“R 

NMAT2, RH02, CONAVB, etc., same as NMATl, RHOl, CONAVl, etc. 
except applied to material 2 

Detail Geometry Cards 

0 DELX(l), DELX(B), DELX(3), . . . , DELX(M) (8FlO. 5) 

0 DELY(l), DELY(2), DELY(3), . . . , DELY(L) (8FlO. 5) 

0 TAU, R (2FlO. 5) 

0 Sl, S2, Wl, W2, W3, HEIGHT, TCOOL, HCOOL 
(leave this card blank when considering a slab, Fig. 11) 

(8FlO. 5) 

DELX(I) = spatial increments in x direction I = 1, 2, . . . , M, ft 

DELY(1) = spatial increments in y direction I = 1, 2 , *a*, L, ft 

TAU = thickness of material 1, ft 

R = radius of inner corner (Fig. 8) (leave blank 
if it doesn’t apply), .ft (=O. for MAT=l) 

Sl = (refer to Figs. 9 or lo), ft 
s2 = (refer to Figs. 9 or lo), ft 
Wl = (refer to Figs. 9 or lo), ft 

w2 = (refer to Figs. 9 or lo), ft 

w3 = (refer to Figs. 9 or’ io) , ft 
HEIGHT = (refer to Figs. 9 or’ lo), ft 
TCOOL = coolant temperature; “R 
HCOOL = coolant heat transfer coefficient, Btu/ft2-set-% 
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Initial Temperature Cards 

0 KODE, I, T(I), II, JJ (215, ElO. 0,215) 
0 . . . 

0 . . . 

(15) 

0 . . . 

0 11100 
KODE = 0 or blank 
I = node number 

T(I) = node initial temperature, 31 
the node number is incremented by the spacing JJ 

HandJJ = until the limit II is reached. Each node so specified 
is assigned the same temperature 

Boundary Condition Cards 

Two options exist: (1) in the first option, the user inputs the flight trajectory 
and the code calculates the convective boundary conditions along the top surface of 
the panel in accordance with the equations presented in Appendix B; and (2) in the 
second option, the user inputs directly the convective heat transfer coefficient and 
adiabatic temperature as functions of time and distance. 

OPTION 1. FLIGHT TRAJECTORY SPECIFIED 

0 REFX, CODEX, HMODI (3ElO. 0) 
0 GAM, RGAS, PR (3ElO. 0) 
0 NTRAJ WO) 
0 TIMTAB( 1), TIMTAB( _. . . , TIMTAB (NTRAJ) (8ElO. 0) 
0 ALTTAB(l), ALTTAB(B), . . . , ALTTAB (NTRAJ) (8ElO. 0) 
0 VELTAB( 1), VELTAB(B), . . . , VELTAB (NTRAJ) (8ElO. 0) 
0 ALPTAB( ALPTAB( . . . , ALPTAB (NTRAJ) (8ElO.O) 

REFX = effective boundary layer length, e.g. , distance from 
leading edge or nose of vehicle (refer to Appendix B), ft 

CODEX = 0. for uniform convective coefficient across top surface; 
CODEX = 1. for nonuniform convective coefficient (i.e., 
function of x); CODEX = -1. for tabular input for 
convective coefficient and adiabatic wall temperature 
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.,’ ,’ ; 

HMODI = nonzero value indicates that a  table will be  read at the 
end and used to mu ltiply the convective coefficients 

GAM = ratio of specific heats of air 

RGAS = gas constant for air, ft-lbf/lbm-?R 

PR = Prandtl number  of air 

NTRAJ = number  of points in trajectory table (2<NTRAJ<50) 
TIMTAB(1) = time  in trajectory table I = 1, NTRAJ, set 
ALTTAB(1) = altitude corresponding to time  TIMTAB( ft 
VELTAB(1) = velocity corresponding to time  TIMTAB( ft/sec 
ALPTAB(1) = angle of attack corresponding to time  TIMTAB( 

(must be  non-negative), degrees 

OPTION 2. CONVECTIVE COFFFICIE.NT AND ADIABATIC WALL - 
TEMPERATURE SPECIFIED 

0 REFX, CODEX, HMODI (3E 10.0) 

REFX = effective boundary layer length, e. g. , distance from 
leading edge of nose of vehicle (refer to Appendix B), ft 

CODEX = -1. (indicates to code that Option 2  is being exercised) 

HMODI = nonzero value indicates that a  table will be  read at the end 

and used to mu ltiply the convective coefficient 

Convective Coefficient and Adiabatic W a ll Temperature Tables 

Two tables are required. The  first gives the convective coefficient as a  
function of time  (argument 1) and distance (argument 2). The  second table gives 
the adiabatic wall temperature as a  function of time  (argument 1) and distance 
(argument 2). In setting up  these tables, the same values for time  and distance 
must be  used in both tables. The  range of the distance argument must include the 

interval REFX to REFX plus Sl for the cooled panel geometry and REFX to REFX 

plus W IDTH, where W IDTH = F  AXi for the slab geometry. The  tables must be  
i=l 

followed by a  blank card. The  specifics on  the format for the tables are given in the 
descriptions of subroutine NURED in Appendix D. 
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The following input data is required for both options: 

Time Intervals Cards 

0 NTIMES W) 

0 TIMES(l), TIMES(2), . . . . . . TIMES (NTIMES) (8ElO. 0) 

NTIMES(I) = number of points in time intervals array (2 I; NTIMES < SO) 
TIMES(l) = initial time (usually equals 0. ) set 
TIMES(I) = time at which temperature is calculated and printed 

out I = 2,3,. . . , NTIMLES, set 

Convective Coefficient Modification Table (omit when HMODI = 0.) 

One table is required to modify the convective coefficient on the aerodynamically 
heated surface. The multiplicative factor is given as a function of time (argument 1) 
and distance (argument 2). The writeup for subroutine NURED (Sheet D-l, Appendix 
D) gives the specifics on the format requirements. Follow this table with a blank. 
card; omit the blank card if the table is not read in. 
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4.3 INPUT DATA FORMAT FOR X-24C GEOMETRY (See Fig. 12) 

0 JGEO, L, M, NE* (4I5) 
JGEO = 2 (selects X-24C geometry) 
L = number of elements through the material 
M = number of elements along top 
NE = number of dominant eigenvalues to be used in solution 

te. g. , a typical number is 5) 

Indexes Card 

Title Card 

0 Run identification, comments, etc. 

Radiation Card 

0 EPSl, TBGl 
EPSl = emissivity of surface 
TBGl = background radiation temperature, “R 

(5AlO) 

(2FlO. 5) 

Material Properties Cards 

0 MAT (15) 
0 NMAT, RHOl, CONAVl, CPAVl (110,3FlO. 5) 

0 TMATl(l), TMAT1(2), . . . , TMATl(NMAT1) omit (8E 10.0) 

0 CONDTl(l), CONDTl(2), . . . , CONDTl(NMAT1) if (8E 10.0) 

0 CPTl(l), CPT1(2), . . . , CPTl(NMAT1) NMAT1=o (8E 10.0) 

(If MAT = 2 include the cards:) 

0 NMATB, RH02, CONAVB, CPAVB (IlO.O,3FlO. 5) 
l TMATB(l), TMAT2(2), . . . , TMAT2(NMAT2) 

1 

omit (8ElO. 0) 

0 CONDTB(l), CONDT2(2), . . . . CONDTB(NMAT2) if (8E 10.0) 

CPTB(l), CPT2(2), . . . , CPTB(NMAT2) 
NMATB=O 

0 (8ElO. 0) 

MAT = number of materials (1, 2 or 3) 
NMATl = number of entries in properties table (maximum of 10) 

NMATl = 0 for constant properties 

RHO1 = density of material 1, lbm/cu-ft 

*Current dimension statements require L x M 2 200 and M < 50. 
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CPAVl = average specific heat of material 1 (used when 
NMATl = 0), Btu/lbm-“I7 

TMATl(1) = temperatures in thermal properties table for which 
CONDTl(1) and CPTl(1) are given; I = 1, NMATl, “R 

CONDTl(1) = thermal conductivity of material 1 at temperature 
TMATl(I), Btu/ft -set-OR 

CPTl(1) = specific heat of material 1 at temperature 
TMATl(I), Btu/lbm-“R 

NMATB, RH02, CONAVB, etc. , same as NMATl, RHOl, CONAVl, etc. , except 

applied to material 2 

Detail Geometrv Cards 

0 DELX(l), DELX(2), DELX(3), . . . . , DELX(M) (8ElO.O) 

0 DELY(l), DELY(2), DELY(3), . . . DELY(L) (8ElO. 0) 

0 Sl, 52, s3, sp (4ElO. 0) 

0 Wl, W2, W3, W4, W5, W6, W7 (7ElO.O) 

0 RC(l), RC(2), RC(3), RC(4) (4E 10.0) 

0 MP(l), MP(2), MP(3), MP(4), M(5) (5ElO.O) 

DELX(1) = spatial increments in x direction I = 1,2,. . . ,M, ft 

DE LY(I) = spatial increments in y direction I = 1,2,. . . , L, ft 
Sl, S2, etc. = (Refer to Fig. 12) ft 

RW) = unit surface contact resistance between 
components I and I+l, see-sq-ft-%/Btu 

MPV) = integer value 1, 2 or 3 to select material properties 
for component I 

Initial Temperature Cards 

0 KODE, I, T(I), II, JJ 
0 . . . 
0 . . . 
0 . . . 
0 11100 
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KODE = 0 or blank 
I = node number 

‘W = node initial temperature, “R 

the node number is incremented by the spacing JJ until 
II and JJ = the limited II is reached. Each node so specified is 

assigned the same temperature 

Boundary Condition Cards 

Two options exist: (1) in the first option, the user inputs the flight trajectory and 
the code calculates the convective boundary conditions along the top surface of the 
panel in accordance with the equations presented in Appendix B; and (2) in the second 
option, the user inputs directly the convective heat transfer coefficient and adiabatic 
temperature as functions of time and distance. 

OPTION 1. FLIGHT TRAJECTORY SPECIFIED 

REFX, CODEX, HMODI (3E 10.0) 
GAM, RGAS, PR (3ElO.O) 
NTRAJ W) 
TIMTAB( TIMTAB( . . . , TIMTAB (NTRAJ) (8ElO. 0) 
ALTTAB(l), ALTTAB(B), . . . , ALTTAB (NTRAJ) (8ElO. 0) 
VELTAB(l), VELTAB(2), . . . , VELTAB (NTRAJ) (8ElO. 0) 
ALPTAB( ALPTAB( . . . , ALPTAB (NTRAJ) (8ElO.O) 

REFX = effective boundary layer length, e.g. , distance from 
leading edge or nose of vehicle (refer to 

Appendix B), ft 
CODEX = 0. for uniform convective coefficient across top 

surface; CODEX = 1. for nonuniform convective 
coefficient (i. e. , function of x); CODEX = -1. for 
tabular input for convective coefficient and adiabatic 
wall temperature 

HMODI = nonzero value indicates that a table will be read at 
the end and used to multiply the convective coefficients 

GAM = ratio of specific heats of air 
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j 3 

RGAS = gas constant for air, ft-lbf/lbm-‘R 
PR = Prandtl number of air 
NTRAJ = number of points in trajectory table (2 I NTRAJ < 50) 
TIMTAB(1) = time in trajectory table I = 1, NTRAJ, set 
ALTTAB(I) = altitude corresponding to time TIMTAB( ft 
VELTAB(1) = velocity corresponding to time TIMTAB( ft/sec 
ALPTAB = angle of attack corresponding to time TIMTAB( 

in degrees _ :: 

OPTION 2, CONVECTIVE_C~QEFFICIENT AND ADIABATIC WALL 
TEMPERATURE SPECIFIED 

0 REFX, CODEX, HMODI (3E 10.0) 
REFX = effective boundary layer length, e.g. , distance from 

leading edge or nose of vehicle (refer to Appendix B), ft 
CODEX = -1. (indicates to code that Option 2 is being exercised) 
HMODI = nonzero value indicates that a table will be read at the 

end and used to multiply the convective coefficients 

Convective Coefficient and Adiabatic Wall Temperature Tables 

Two tables are required. The first gives the convective coefficient as a. 
function of time (argument 1) and distance (argument 2). The second table gives 

the adiabatic wall temperature as a function of time (argument 1) and distance 
(argument 2) . In setting up these tables, the same values for time and distance 
must be used in both tables. The range of the distance argument must include the 
interval REFX to REFX plus Sl for the cooled panel geometry and REFX to REFX 

M 
plus WIDTH, where WIDTH = Z A Xi for the slab geometry. The tables must be 

i=l 
followed by a blank card. The specifics on the format for the tables are given in 
the descriptions of subroutine NURED in Appendix D. 

The following input data is required for both options: 

Time Intervals Cards 

0 NTIMES WO) 
0 TIMES(l), TIMES(B), . . . . . . TIMES (NTIMES) (8ElO. 0) 

NTIMES(1) = number of points in time intervals array (2 5 NTIMES I 50) 
TIMES(l) = initial time (usually equals 0.) set 
TIMES(I) = time at which temperature is calculated and printed 

out I = 2,3,.. . ,NTIMES, set 
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Convective Coefficient Modification Table (omit when HMODI = 0.) 

One table is required to modify the convective coefficient on the aerodynamically 
heated surface. The multiplicative factor is given as a function of time (arg&ent 1) 

and distance (argument 2). The writeup for subroutine NURED (Sheet D-l, Appendix 
l3) gives the specifics on the format requirements. Follow this table with a blank 
card; omit the blank card if the table isn’t read in. 
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4.4 SAMPLE PROBLEM FOR COOLED PANEL GEOMETRY 

This subsection contains an illustration of the cooled panel geometry considered 
as a sample problem (see Sheet 4.4). Figure$ 9 and 10 show the grid network. The 

p-e! was constructed of aluminum with a 0.686 cm layer of beryllium applied across 
the top in contact with the hot boundary layer air. The aluminum structuke was cooled 

by a coolant at a temperature of 660”R:with a convective heat transfer coefficient of 

612.8 watts/m*K. 

Aerodynamic heating was calculated by CAVE based on the missile flight trajec- 
tory shown in the following listing of the input data. The panel was located on the mis- 
sile 6.096 m aft of the start of the boundary layer and hence the input variable 

REFX equals 20. Throughout the flight trajectory the angle of attack was 20 degrees. 

This sample problem shows the use of the heating multiplier option. Examina- 
tion of the heating multiplier table in the listing of the input data reveals that during 
the time period 30 to 40.4 seconds, the convective heat transfer coefficient increases 
fivefold for the center section of the panel. To represent this step change in the 
heating, table entries of 29.9, 30.1, 40.3 and 40.5 have been used. Furthermore 
the time step intervals array contains these same times. Whenever a step change 
is to be approximated to CAVE, it is necessary to use “bracketing” times in setting 
up a multiplier table and the time step interval array. That is, if a step change 
occurs at time to, the table should have time entries at to- E and to+ Q where E is 
some small number. Likewise the time step interval array should have these same 
times. 

The following pages show listings of the input data and the output generated by 
CAVE for this cooled panel problem. The sequence of the output is:. 

a Statement regarding storage allocated for S array in main program 

l Geometry related input data 

l Material properties illustrating the format used when the properties are 
temperature dependent and temperature independent 

l Flight trajectory table 

l Table of heating multiplier as a function of time and distance 
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l Node number location within the output array. A node number of 0 (zero) 
printed in this array indicates a nonactive node. Notice how the printout has 
a format similar to the shape of the geometry of the problem being considered, 
which makes for very convenient reading and quickly gives the user a feel 
for the temperature distribution within the body. This format is carried 

throughout in all the following arrays 

l Material number assigned to each node. A material number of 3 signifies 
that the node is at an interface between materi al 1 and 2 

l Capacitance of each node 

l Conductance in the x-direction between nodes 

l Conductance in the y-direction between nodes 

l Initial temperature distribution 

And then, the following information is printed for each time interval: 

Flight trajectory parameters, Mach number, altitude, velocity, and angle of 
attack at the end of the interval 

Average heat transfer coefficients calculated using h values at the beginning 
and end of this time interval 

Average heat transfer couplings, which include radiation effects, if any, 
calculated using the temperatures at the beginning of this time interval 
(See Appendix C) 

Average adiabatic wall temperatures for this time interval 

Temperatures at the end of the interval 

Steady-state temperatures for the heat transfer couplings and adiabatic wall 
temperatures of this interval 

Integrated heat input to each node. This gives the net heat transfer at 
each boundary node up to the end of this time interval. A positive value 
signifies heat transfer into the body and a negative value heat transfer out 
of the body at that boundary node 

(To aid the reader, annotation has been added to the listing of the input data and 
to the output. ) 
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JGEO 1 M NE 
+ JJ J 

R”N iL.1: .O~“ON 2.1 0 Y”LT APPLIED TO TRAJ. HEAT,HC ~COMMENT CAR0 
2 e NO RADIATION 

7 11.. A - 2 PROPERTIES 
450. 500. 625. 750. .0322 .03056 .02722 .02444 67S.J 

.36 .40 .4R5 .5&O 
.yz/ CP !%i ‘;I!$, PROPERTIES OF FIRST MATERIAL AS FUNCTION 

.Oi 
172.0 .022* .215+ 
54255 

.0225 .015 .O,S .O,S .015 .015 PROPERTIES OR SECONO MATERIAL 
.0225 

,007s .0075 -015 .015 .015 ,015 .OlS .O,S .030 .030 .030 .Ol!i .OIS .O,S .;::X NOOAL GEOMETRY DATA 
-0225 
.217S .I415 .03 .09 .06S .,so 660. .03J 

,110: 
I 660. 41t.o- INITIAL TEMPERATURE 

20. 
I.. s& 

5 

52273. 20. 6.665. 30. -"v 7400;. 

4 ;:;$&::;+&MoD' 

..ook 
2904.24 4453.2. 

20. 20. 
""%' 5191.45 FLIGHTTRAJECOTRY . 20. 

'0 
0. 10. 20. 29.9 30.1 40.3 .o.s .~ 

120. 
66 

0. DIST. 0. 1. 
V2Zi: 

I. 

VALUES I. 
20.1s 1. 

20.,51 1. 
20.3 I. 

29.9 
1. 
I. 
1. 
I. 
1. 
I. 

40.5 
I. 
1. 
1. 
1. 
1. 
*. 

. 

BLANK CARD 
\ 

’ NOTE HOW ‘STEP’ CHANGE IN HEATING IS HANDLED. 

OFT 

SHEET 4.4 INPUT DATA FOR COOLED PANEL PROBLEM (REFER TO FIGS. 9 & 10) (SHEET 1 OF 8) 



l ********************. 

NO. OF ELEMENTS 
ALONG TOPSURFACE 

10 SURFACE ELEMENTS-- Id R”l.5 BY 3 ooHlN*NT “00E5...RE0”1RE.5 5352 WORDS OF MEMORY 

CC”NON”H,,E...RE”“CF OIHENSlnN “F 5 AND VALUE “F 61 O~C- VALUE AEQUI RED FOR THIS P.ROBLEM 

VALUE REQUESTED IN CAVE R”N N3.4.2 M”0 “N L3.1 o HULT APPLIED TO TRAJ. HEAT+-COMMENT CARD 

**********t************************************************************************************************************* 

RAO, ‘AT 

2;: 
TAtI= 

EulS!z.,“rTY- 
RACKGr(O”N0 T= 

Y*= 
12= 
13= 
HT= 

CO”LANT Ii= 
COOLANT T= 

0.2175E 00 
0.1415E 00 
0.2350E-01 

2: 
0.3000E-01 
0.9000E-0, 
0.45OOE-0, 
O.,5OOE 00 
0.3OOOE-0, 
0.0600E 03 

: OELX(I) 
0*3OOOE-0, 

: 
0.2250E-01 

x 
0.2250E-01 0.,500E-01 5 O.,500E-01 

6 O.l5OOE-0, 0.1500E-01 O.l500E-0, z 0.2250E-01 10 0.4500E-01 

: OECY(1) 
0.7500E-02 

: 
0.7500E-02 

6 O.,500E-0, 0.1500E-01 : 
O.l500E-01 4 O.l!SOOE-01 O.l500E-01 
O.l500E-0, 9 0.1 SOOE-01 1: 0,3000E-01 

0.3000E-01 12 0.3000E-01 13 O.l500E-01 14 O.l500E-01 15 0.1500E-01 
0.7500E-02 
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- 

MATERIAL I PHcl=,l..00 LBY/C”-FT 

MATEFIIAL 2 RHo=172.60 LBY/CI,--FT 1(=0.02220 RTu/SEC-FT-0EG.R CP=O.Z,~O RTWLFIY-DEG.R+zN,, MATERIAL 

************~f********.************************************************************************************************* 

6 6 
0.0 
0.C 
“.3cllOF 02 
0.2011F 02 
0.2015F 62 
0.2015C 62 

o*2030E”‘2 0 

O.,OOOE 
O.lOOOE 
O.SD”OFI 
“.SOOOE 
O.lOOOF 
0. IOOOE i.iOOOE 01 lJ.IOOclE 01 0.0 

1ST MATERIAL HAS 
TEMPERATURE 
DEPENDENT 
PROPERTIES 

’ 
*****~********,****~***~~***********************~**********************************************************************~ 

PRINTOUT HAS 
,’ NOnAL NETWORK I , FORMAT SIMILAR 

TO SHAPE OF GEOMETRY N”DE NUYREF)S 
Y ’ cnL 

I 7.0 1.0 3.0 20.0 19.0 10.0 35.0 36.0 36.0 51.0 so.0 62.0 67.0 66.0 66.0 63.0 62.0 86.0 100.0 99.0 98.0 115.0 114.0 116.0 :3:*x 132.0 . 116.0 1.7.” 1.8.” 
65.0 101.0 117.0 133.” 149.0 
66.0 102.0 116.0 

0.0 0.0 0.0 0.” 71.0 67.0 103.0 119.0 E-t . 

2: 0”:: E :-: . 73.0 72.0 69.C 66.0 lb5.0 104.0 121.0 120.0 

:::-: 136:” 

137.” ::5*: . 
2: 
___ 

2: 2,” ::: 75.0 74.0 91.0 90.t 107.0 106.0 123.” 122.” 0:” 00 010 ” 0 
__. 

0.0 0.0 0.6 0.0 176.0 106.0 124.0 
3. 29.0 45.0 61.0 77.0 109.0 125.” 20” E 

I IS.6 I..0 31.0 30.0 47.0 46.0 2:‘: . 79.0 78.0 95.0 94.0 111.” 110.0 127.0 126.” ::oO 0.0 

112.0 126.0 0.0 “,‘i . is i6.0 32.0 40.0 64.0 60.0 96.0 
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R”” i-cc 2 3 4 5 6 7 6 9 10 
: 1.0 1.0 1. 1.0 I.0 

3 MAT. 1 
1.0 1.6 

::: 

::: 1.6 1.0 1.0 1.0 

3.0 

: 2.0 2.0 2.0 2.0 2: 2.” 

::: . 

2.” :.“, 

3.0 ::: 2,” 4:: 

2: ~:oo $2 22:: ::: 
.O 00 

a:0 
0 0 

.O 0:” 
2: 2,” ::: 2,” ::: 2.0 

3.6 ; INTERFACE - O< 

: NODE (112 MAT. 1 00:: / El ::: 2: 22:: 
:: AND l/2 MAT. 2 0”:; MAT:.2 ::: 0”:: 20” 22:: 
;$ BY VOLUME) 2 o 0.” 0.0 0.” 

210 

2.0 . 2. 2: Z:,” 

14 
15 2: 

22:: $.i . 2: 2: 2: 
I6 2.0 . 2.0 2.0 2.0 

“.“36E-02 “.636E-02 “.636E-02 
0.62X-02 “.“36E-02 O.R36E-02 “.636E-02 
“.41RE-OR 0.636.5-02 O.R36E-“2 “.636E-02 
0.41 RE-02 O.A3hE-02 O.R36E-02 “.636F-02 
“.4lRE-02 O.R36E-02 O.R36E-02 O.R36E-02 
“.41RE-02 “.636E-02 “.636E-02 “.627E-02 
“.1136E-OP “.167F-0, 0.167E-01 O.R3hE-02 
O.R3hE-02 “.167E-0, “.,67E-0, O.A36E-02 
“.83hE-02 “.167E-01 “.167E-“I O.R36E-02 

“.222E-01 “.222E-0, “.222E-0, 
“.222E-01 “.222E-01 “.222E-01 “.178E-01 
“.222E-01 “.222E-01 “.222E-“1 “.176E-01 
“.222E-01 “.222E-01 “.222E-0, “.666E-02 
O.t444E-“I “.04&E-0, “.444E-0, 
“.44&E-01 “.444E-01 “.444E-0, 
“.44&E-0, “.444E-01 “.444E-0, 
“.222E-01 “.222E-0, “.222E-01 

VALUES 
“.222E-01 “.222E-01 “.222E-01 0.0 “,:: SINCE THERE 

“,:: ARE NO NODE 
TO THE RlGHl 
OF THESE 
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3E-01 0.3 “.222E-01 “.223E-0, “.222E-01 “.222E-01 “.222E-01 
3E-01 0.3 “.22$E-01 “.222E-01 “.222E-01 “.222E-0, “.212E-01 

“.222E-01 “.222E-01 0.222.5-01 
“.222E-“1 “.222E-01 “.222E-“1 
“.222E-01 “.222E-01 “.222E-01 
0.222E-01 “.222E-“1 “.222E-01 

“.740E-02 “.1‘38E-“I “.146E-01 “.740E-02 
“.555E-02 O.llIF-01 “.ll,E-01 “.565E-02 
O.S!%E-“2 O.lllE-01 O.IIIE-0, “.555E-02 
“.7‘0E-02 “.14RE-01 

“.222E-“1 

- ZERO VALUES SINCE THERE ARE NO NODES BELOW THESE 
1 2 3 6 8 9 l” 

660.0 hbO.0 hhCl.0 hL3.O 6k.O MO.0 b~O.0 660.0 bh0.O 660.0 
660 .o 660.0 660.0 

~~:~: 
660.” 

z*,” 
6hO.O 660.0 

660.0 660.0 bb”.” 660.0 660.0 660.0 z,“,“.,” 2,“‘,” . 
660 .O 660.0 660.0 660:” 660.0 660:” 660.0 660.0 Oh”:” 660.0 
660.0 660.0 660.0 660.0 660.0 660.0 660.” 

.66”.” 
660.” 660.0 660.0 

0. 0 0 
0:” 

0 660.0 660.0 660.0 660.” 660.” 
2: 660.0 660.0 

i:rj 
0:” 

,“:: 20” 

,“I,” 0.” ::o 0.0 660.0 660.0 660.” 6.50.” 660.” 660.0 660.0 660.0 
660.0 

2: 0.0 ::: 0.0 660.0 660.0 660.0 660.0 z?: 660.0 660.0 660.0 660.0 660 .O L%:,” 0.0 0.0 660.0 0.0 
0.0 0. 

660.0 66”.: 

0.0 0.0 660.0 66010 z%’ . : 660.0 0.0 
0.0 

660.0 660.0 660.0 660.0 660.0 0.0 
660 .o 660.0 660.0 z:-: 660.0 660.0 

~~:‘: 
. 660 .O . “,*: 

660.0 660.0 660.0 . 660.0 bb0.0 660.0 bb0.D ii.,” 010 
660 *O 660.0 660.0 660.0 660.0 b60.0 660.0 660.0 0.0 0.0 

Q, 
SHEET 4.4 OUTPUT DATA FOR COOLED PANEL PROBLEM (REFER TO FIGS. 9 & 10) (SHEET 5 OF 8). 
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***** T I Y E = “.,“““E 02 S E C 0 N D S l *+*+ FLIGHT CONDITIONS 
xLI*cli= 3.600 A.LTIT”“E= 46136.5 VELOCITY= 3670.74 ANGLE OF ATTACK= 20.00 f- AT TIME 10 SECONDS 

HF8.T TRANSFER COEFFICIENTS BTU/SEC-FT**2-“EG.R 
I 2 3 

0 . 206 :-“1 
5 J 

AVERAGE OF H AT TIMES 0. AND 10. SECONDS 
7 6 

“.20RE-0, 0 . 2” RE-0 
9 

1 “.200E-“1 0 .2oRt-o 
,o 

0 . 20 .2-o, 0 .ZOBE-“1 0 ZORt-“1 0 . 2”6k -01 
::: 

O.ZOBE-“1 
::: 2,” ,“:I? k,” 2: ::: o-n 0:” 

::: ,“:: 
0.0 

:::“OE-0, A”. 
0.0 

300E-01 :::OOE-“1 “.300E-01 i:: 
Il.0 0.0 Ir 0.” 0. I o.~nnF--ol n-n 

i::: 0.0 
i:,” 

COOLbiT 
H “.” 

0.0 
0”:: 
k,” 

::“, 0.0 
2,” 

.__.. - _. 
“.300E-0, 
“.300E-01 
“.30”E-0, 
“.300E-0, 
“.30OE-0, 

0.0 0.0 A 0.0 
O.XOOE-01 “.30OE-“1 “.3OOE-01 “.3”nF-01 ‘“.3O”E-01 0.” 

0.0 0.300E-01 0.0 

I ::: ::: 0.0 
0.n 

0.0 
n-0 

0.0 
n-n 

--- 

::: 

::: 
0.” 
0.0 

::: 

::: 

:r: r _._ ___ --- -__ - _ ~. -_I 
0.0 0." 0.0 0." 0.0 0.0 0.0 0.0 0.0 0.0 

HFAT TF)ANSFCP C”UPL,NGS BTI,/SEC-DEG.R 
AVERAGE OF HA AT TIMES 0. AND 10. SECONDS 

I I 2 3 4 5 *n “.h23F-“3 0 .b 6 .3t- 6 7 0-i 0 .a hR E- 0 R 9 3 0 . 312E - 03 
0 .312E-03 “.312E-03 “.312t-03 “.3,2!=-0.3 O.QRRE-“3 ” 

0.0 
O.b50E-03 
“.bS”E-03 
“.450E-03 
O.dS”E-03 
O.‘a50E-03 
“.90”E-03 
#-BmO170F-“2 ___ ___ -__-“- -_ “._ 

D.0 
[O.900F-03 

0.0 0.0 0.” “.900E-“3 
“.67TE-03 O.h,=.E-03 O.“SOE-03 “.450E-03 

ii:,” 0.0 
n.n 

IO.0 0.0 0.6 0.0 0.0 0.0 _.. 0.0 ___ 0.0 0.0 0.0 

l,bRA?,C WALL TEMPERATURE DEC.R 
AVERAGE OF TAw AT TIMES 0. AND 10. SECONDS 

.3 -1. - - D 

I 
U.” 
:-“0 ,“I,” ,“I,” ,“:: 0”:: ,“:: 2,” It:00 I, .” 

0.0 
_o^-^ 0.0 0.” 0.0 0.0 0.0 0.0 0.0 __- ^ .__ _ ,o*,o 

’ I:!‘? 0.” c+jy(=p$l 
0.0 

. . 660.0 660.0 

2,” 00:: ::: 0.0 
0.0 0.0 

i:i 
. 

bbO.0 
660.0 
660.0 
660.0 
660.0 
660.0 
660.0 
660.” 
660.” 

::: 
0.0 

“.” 
00:: 0.0 

ii:,” 
00:: 
0.0 

0.0 
0.0 
0.0 

. 
o”.: 
0.0 
0.0 
0.0 

SHEET 4.4 OUTPUT DATA FOR COOLED PANEL PROBLEM (REFER To FIGS. 9 & 10) (SHEET 6 OF 8) 



696.2 
692.6 
6RCI.a 
664.2 

1 677.9 
673.7 
670.5 
h6Fs.O 

695.1 
691.5 
666.6 
662.3 
677.7 
673.6 
6,O.A 
666.2 
665.0 
662.3 

694.2 
690.6 
665.8 
661.4 
677.4 
673.9 
671.1 
668.7 
665.1 
662.3 

60.9 

093.6 693.1 
690.0 669.5 
665.2 6RI.R 
660.9 6RO.7 
677.2 677.3 
674.2 674.6 
671.7 h72.R 
669.7 672.0 

692.7 
669.2 
664.5 
660.6 J 677.5 
675.2 
673.6 
673.3 

. 
0.0 

. 
,o.: 
0.0 

",'Z . 

BOUNDARY 

697.0 
690.2 
690.6 
6636.5 

00 
010 

::: 

,":: 

700.1 
697.2 
694.3 
692.9 

0 0 
010 

ii:: 

::: 

696.9 
695.9 
h92.P 
691.2 

0.0 
0." 

b-2 

0":: 

660.6 6h0.5 hh0.L 660.3 660.3 
660.6 660.5 660.4 660.3 660.3 
660.6 660.5 C6O.O 660.3 660.2 

60.5 
660.3 
660.2 
660.2 

‘EAOY-STATE 
- -HIS TIME 

I 

‘IONS CON011 
INTERVALS OF 0 TO 10 SECOilOS 

_I 

R10.0 A12.6 R05. I 
793.0 
779.5 
7hR. I 
760.0 
7.TFI.5 

RE3.0 
61S.R 
40R.P 
795.9 
7Rl.b 
770.T 
763.8 
76, .O 
760.2 

629.4 
823.A 
817.1 
709.0 
763.5 
772.0 

A- 

766.3 
763.7 
762.2 
761.7 

R79.h 

I 
A37.9 837.3 

0:o 
,“:n” “.” 0.0 

633.9 

2," -7" . 
0 0 
0:" 
"." 

626. I 
R19.3 
RI1.R 
797.9 
783.0 
771 .=I 
705.7 
763.1 
761.7 
76, .? 

::“o 0.0 0.0 

::“, 0”:: ,“I,0 
0.0 0”:: ,“:: 

,&.A 0 746.5 0.0 n,.: 0. 

745.9 747.9 751.0 
7bh.R 746.7 751.7 
707.0 749.0 751.9 

0.” 
ii:,” 
0.0 

_.. 
757.9 

“.” 

0 
4. 
0.0 
0.0 
0.” 1 “.O 
cl.0 

“,‘i‘ . 
0.0 

. 
0.0 

~~~T~~, 
HEAT LOSS $0” 010 

0:” 0.0. 0.0 t:,” 0.0 ::: 0.0 

0.0 
0.0 
0.” 
0.0 
0.0 

-0.0 
2.: 010 0.0 

SHEET 4.4 OUTPUT DATA FOR COOLED PANEL PROBLEM (REFER TO FIGS. 9 8110) (SHEET 7 OF 8) 



SECOND 
l **** T I Y E = 0.2000E 02 I E C 0 N ” S t**** -TIUC CTCD 8 1111L “I LI 

XYACH= a. 600 ALT,TI,DE= 52273.0 “EI-“C,TY= 4453.24 ANGLE OF ATTACK= 20.00 

b”FRAGF HFAT TRANSFER C”EFFICIENTS STU/SEC--FT**2--nEG.R 
R”V / C”L I 2 3 0.242:-o, 5 6 7 R 9 1” 

: “.2ailE-01 “.242E-01 0.0 “.242E-“1 0 .242E-03 .24 -01 

E::: 0.0 ::: 0.” 

0.” 

: 0.0 0.0 ,“I,0 ::: 0.” ::: 0.0 

0:” 0 242E-01 0.0 “.2I2E-“I ::o 242E-01 010 0 ?42F-“1 

2: ::: ::: ,o:: 
5 “.70”F-01 “.700E-cl1 “.300E-“1 “.300E-01 “.300E-01 
h 0. .” . . , “.300E-01 
: ::," 0.0 0." 

0.0 0.0 
,".: . 

9 
I: z:," ,"I:: 00:: 2: 

"." 0.0 0.0 0.0 

“.3”“F-01 0.0 
“.,OOE-01 
“.3”0E-01 z:“, 
“.300E-0, 0.0 
“.30”E-01 0.0 

ii 
.~ 

0.0 0.0 0.” 0.0 
13 I “.3OOF-“I 

~“.300E-01 
“.3”“E-“1 “.3O”F-01 “.3O”F-0, “.3O”E-“l ::: 

SHEET 4.4 OUTPUT DATA FOR COOLED PANEL PROBLEM (REFER TO FIGS. 9 & IO)(SHEET 8 OF 8) 



4.5 SAMPLE PROBLEM FOR SLAB GEOMETRY 

Figure 11 illustrates the grid network for the slab geometry considered as a 
sample problem. Aluminum was used throughout the slab and hence TAU = 0. 

This sample problem illustrates the use of the option to input the convective 
heat transfer coefficients, h, and adiabatic wall temperatures, TA+ as functions of 
time and distance along the top surface rather than have CAVE calqulate them based 
on a flight trajectory. The values f& h that were input were based on the equation 

h = 0.005 + 0.0075 cos(5 TX) 

The adiabatic wall temperature was taken to be constant with respect to both time 
and distance. 

Since the slab is rectangular in shape, the output is particularly easy to read; 
a row in an output array giving the values associated with a row of nodes. The type 
of output is the same as was described in detail for the cooled panel geometry 
(see subsection 4.4). 
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COMMENT CARD 

Rllhl i-L.1 7 sLAE14*lTH3H PRESCRlElE” AS Fl,NCT,“H OF x 0. 0. 
1 0 172.8 

-“%. 
.215 

.OI .“2 .oe .02 .a1 

l “E .OI .01 .O,S .015 .015 .030 - AY’S 
- BLANK CARD - NO INSULATION OR SECOND LAYER, 

4150. 42 INITIAL TEMPERATURE ALL ONE MATERIAL 
2 R SIGNIFIES THAT H AND TAW WILL BE READ IN RATHER THAN CALCULATED BY CAVE 

TABLE OF H VALUES FOR ZTIME VALUES AN0 8 X VALUES 
.O” .“0732 .“07.37 

.095 .r)O=#RQ .“05R9 
., .00500 .r)o=.oo 

> 

NOTE THE TIME AND X VALUES HAVE 
TO BE THE SAME IN THESE TWO TABLES 

TABLE OF TAW VALUES FOR 2 TIME VALUES AND 8 X VALUES 

BLANK CARD AT END OF TABLES 
hO0. 800. 1000.) TIMESTEP INTERVALS ARRAY 

SHEET 4.5 INPUT DATA FOR SLAB PROBLEM (REFER TO FIG. ii ) (SHEET i 0~ 6) 



+*.*******L+~********* 

: : 
NO. OF NODES 

CAVE C”OE 

ALONG TOP SURFACE 
:*****.~~y~*~~~& 

J kL,..s G,“ES .LYENTS ye OF E’GENVALUES NE d SVRFICF ECEwEHTS-- 3 DOMINANT Y”“ES...REO”lRES 1139 *alms OF YELIm?V 

ECON”IIOY,ZE...RFI)\,CE l-l,YEYSl”N DF s mm “LL,IE l-w YIT)T)DS Fl)“Y ,200o TOWARDS 13po- VALUE REQUIRED FOR THIS PROBLEM 
YVALUE REQUESTED IN CAVE *******.********.****~*******~*********.******************************************************************************** 

: 
nELvl1) 

0.5000E-02 
s 

O.l”OOE-01 3 O.lOOOE-01 4 O.l5”0E-01 s O.l500E-01 
h O.ISOOE-01 0.3000F-01 

L**.*~*.~*I*.*.**.***~..***.****~***.*****.*.******.*******.~.****~***~.*****.*~**~***.~***********************~****.*** 

YATEI*lAL P”OCE”T,ES CONSTANT 
Y.TE”1C.L 1 IH”=l72.“0 CBY/C”-FI K-0.02220 BTI,,SEC-FT-0EG.R CPsO.2,so sT”,LsY-DEt.~ MATERNAL 

PROPERTIES *.***.*****L*t+******************.***********************.*******************~*****************************.************ 

SHEET~.~ OUTPUT DATA FOR SLAB PROBLEM (REFER TO FIG. ii) (SHEET 2 OF 61 



TABLES READ IN FOR 
H AN0 TAw 

0.0 0.0 0.0 
E 0.0 0.0 
Lo” 

E . 
0.” 
0.0 
0.0 
0.0 

:::: 
0.” 

2: 
0.0 

i*:: 
0:o 

::?I 
0.0 

02 
" 

:::oooc-“2 
“.2000F-“1 
0.4000F-“1 
O.hOOOF-“I 
O.(IOOOE-01 
0.9500E-“1 
0.1000F an 

2 ” 

2: 
o;sooo~-o2 
0.2000F-01 
O..OOOE-“1 
O.hOOOF-“1 
“.“OOOF-01 
0.9SOOE-“1 
0.1000C 0” 

0 0 

0." 
O.,25”E-0, 
“.134”F-“1 
0.1r1ac-ai 
O.,107E-01 
O.Q.l”E-02 
0.73202-02 
O.S”QOE-02 
“.=,OOOF-02 

ELhOE 04 
O.P.OOe 04 
0.24hOE 04 
0.2400E “4 
0.2400r- 04 
0.2400E “A 
0.24OOE 0. 
0.24601 0. 

H AN” 

0.,000E 04 
“.*PSoE-01 
O.,2‘I”E-01 
O.l214E-01 
O.l107E-“1 
0.941”E-02 
0.732OE-02 
0.5”90E-02 
0.50OOC-02 

O.lO”“E “4 
0.2460E “1 
0.21hOE 04 
“.246OF: 0. 
0.2*00E OI 
0.2460E “0 
0.2400E 04 
0.2.6OE 04 
0.2.60E “4 

,“:E 0.0 
0.0 

Ki 
0:o 
0.0 
0.0 

0.0 
8:: 
2: 0.0 0.0 . L?.: 

i:: 0.0 
Loo 
2: 
0.” 
0.0 

********************************.*************************************************************************************** 

N”“lC NETYDRK 

HEATING ON THIS FACE 

YITERllL NllYRC” AT EACH N”“E 
““al / C”l. 1 2 3 . 5 6 

: . ,:a 1 0 1.0 

::: ::: 

I.0 1.0 1 1:o 0 1:o 1 0 

: 

::: 
::: ONE MATERIAL 

2 
::: 

1.0 1.0 ::: 1.0 

::: 1.0 1.0 ::o” 

::: ::: ::: THROUGHOUT 
7 1.” 1.0 I.0 1.0 1.0 

SHEET 4.5 OUTPUT DATA FOR SLAB PROBLEM (REFER To FIG. ii) (SHEET 3 OF 6) 



I 2 7 4 5 
O.lRM-02 0.372E-02 0.379~-03 0.372~-02 0.372E-02 

h , 
O.,R6E-02 

0.372F-02 0.703E-“2 0.763F-02 0.743E-02 0.743E-01 0.372E-01 
0.372F-02 0.743E-“2 0.703F-02 0.743E-02 “.7b3E-02 0.37PE-07 
“.557i=-“2 O.,llF-“1 O.,,,F-01 O.,l,E-01 O.l,,E-“1 0.557E-02 
“.957F-02 O.,IlF-“1 O.,,,F-0, O.lllF-0, “.,,lE-0, O.=,S,E-02 
“.C157F-02 “.,,,E-0, “.,l,F-“1 O.,,,E-01 O.,,,E-0, 0.557E-02 
O.l,,F-0, 0.223F-0, 0.22’iF-0, 0.223F-“1 0.223E-0, O.,,,E-0, 

C”N”“CT.NCF IN X-“,RECT,“N 
R"Y / C"L 1 2 3 d 5 6 

: 
“.,&OF-“2 0.555E-02 O.S55F-“2 0.555E-“2 0.740E-02 
“.,4”F-0, O.,,lF-0, O.,l,F-0, O.,,,F-0, 0.14RE-0, i:: 

: 
“.,IRF-0, O.ll,F-0, “.,l,F-“1 O.,,,F-0, O.l&“E-0, 
0.222F-01 “.lhhE-“l O.,hhF-0, O.,hhF-0, O.ZRPE-01 ZERO VALUES SINCE THERE ARE 

;: 
“.222F-“1 O.,hhF-0, 

::,“4 
O.,hCIC-0, “.,hhF-“, “.227F-0, 

0.222F-“1 O.lhhE-“l O.,hhF-01 0. ,hhF-0, “.222E-“1 ,“:,” 
NODES TO THE RIGHT OF THESE 

7 “.444F-0, 0.333F-0, 0.373F-“1 “.,T=,F-“1 0.444E-0, 0.” 

ZERO VALUESSINCETHERE ARE NO 
NODES BELOW THESE 

SHEET~.~ OUTPUT DATA FOR SLAB PROBLEM (REFER TO FIG. 11) (SHEET4 OF 6) 



***** T I Y E = O.ZOOOE “3 5 E C 0 N D S **Lt*4- FIRST TIME STEP 

A”E*LGC HEAT TRANSFEQ COEFFlClENTS BT,,/SEC-FTIIP-f3EG.W 
R”W / cm 1 P 3 4 5 6 

1 O.l25F-01 0 . 12lE - 01 0 . ,,,F - 0, 0 .9. IE - 02 0 . 732E - 02 0 . 5 69 t - 8-,? 
: i:,” 0.0 0.0 

0.” 0.0 LOO ,“I,” 

: i:: ::: ::: 0.0 0.0 i:,” i:,” 
: 0.0 

0.0 ::,o t:,” i:: , 

1 2 3 4 5 6 
0.125E-03 0.2.3E-03 0 22,i=-0-l 

01” 
0 .” 1 ” F-. n-3 0 . 1 . hE -0 3 0 564E-0. 

0.0 0.0 0.0 0:b 
::: 0.0 

0.0 ,“I,” 
0.0 ::“, 
0.0 0.0 ::: 

0.0 0.0 0.” 0.0 . 
E.,” 

0.0 
:::: 0.0 

i:“, 
0.0 . 

0.0 0.0 0.0 :.: 

- AVERAGE OF H AT TIMES 0. AND 200. 

- AVERAGE OF HA AT TIMES 0. AND 200. 

*“F*AGF AOlA”AT,C WALL TFHPFF(ATIIl?F “FG.9 
R”” / C”L 1 2 3 4 5 6 

: 2.hO.O 2.hO.O 2.hO.D 2bhO.O 4hO.O 2.6 o . 0 -AVERAGE OFTAWATTIMESO.AND~OO. 
: I?:: :.-I? ,“I,” 2: ,“:,” if:,” 0.” c, 

z:“, 0.0 
,“:: 2,” ::: ::: i:: 

: i:,” ::: ,“:: i:: NY:,” 

- TEMPERATURES AT TIME 200. 

STEh”Y-STATE TFYPEeATURES FOR THE .,O,,NDAI)Y C”N”,T,“NS AT THIS T,r(E “EG.R 
anr I C”L , 2 3 4 5 6 

I 2460.0 2 6” 0 : 2.00.0 2900.0 2060.0 2Lo:o 2bhO.O 2.60 0 2.60 0 2460.0 - 2460.0 2460.0 2.00.0 2.+50:0 2160.0 2sao:o 2460.0 2460.0 STEADY-STATE TEMPERATURES 
: 2460.0 2.60.0 2410.0 2060.0 2.hO.O 2460.0 2.60.0 2400.0 2460.0 2460.0 2460.0 FOR BOUNDARY CONDITIONS 

: ::Z’: 
2460.0 24hO.O z?: 

DURING TIME INTERVAL 
2460.0 2460.0 

. 2460.0 2.60.0 2rso:o 2.60.0 2460.0 0. TO 200. 

SHEET 4.5 OUTPUT DATA FOR SLAB PROBLEM (REFER TO FIG. 11) (SHEET 5 OF 6) 



INTEGRATED HEAT INPUT AT EACH NODE 

*n* / C”L 
: 

:..I EA.7 

k”o 
0.0 

: 0.0 0.0 

5 ::“, 
6 ::“o 

0”:: 
7 0.0 

“TU 
:;.o” 

010 0.0 
::: 0.0 

4 
44.1 

:*: . 
0.0 

::: 
0.0 

5 TM.4 0.0 0.0 
2: 
::: 

6 
13.9 

0.0 
0.0 
0.0 

::: 
0.0 

NET HEAT INPUTTO EACH NODE 
- UPTO THISTIME 

l .*** T , *I C = O..OOOE 03 S E C 0 N ” 5 l **** - NEXTTIMESTEP 

AVFRAGF HFAT Ts?ANSFFR C”l=f=FICIFN1 
ROW / C”L 1 2 

- : “.125E-“1 

::: 

0.0 “.121F-01 

3 
4 0.” 0”:: 

5 (5 :::: 0”:: 
7 0.0 0.0 

‘S RTI,,SEC-FT**2-nFt.R 
3 4 

O.,llF-01 O...,F-02 
0." 0.0 

. 
i.: 

. 
E.0" 

0":: 
. 

0.0 
i.i 

. 

2.“,“.0 
0.0 
0.0 
0.0 

!:I 
. 

,A,., 
1759.9 
1757.. 
1754.7 
1752.0 
1749.9 
17.h.S 

5 
0.732E-OP 
2: 
0.0 

2,” 0.” 

2.“,“.0 0.0 
,“:: 
i:: 
0.0 

1720.9 
175R.h 
175h.S 
1754.0 
1751.6 
1749.7 
,746.. 

6 
0.569E-02 
0.0 

t:: 

::,” 
0.0 

O.WEh-“4 

t:: 

::,” 

::: 

h 
7460.0 

0.0 
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4.6 SAMPLE PROBLEM X-24C GEOMETRY 

Figure 12 shows the grid network for the X-24C geometry considered as a 
sample problem. 

In many respects the input and output for this problem are similar to that of the 

cooled panel problem presented in subsection 4.4. One of the differences is that 
there are three materials here instead of two which affects the array of material 

.numbers. 

For the X-24C geometry a material number of 1, 2 or 3 at a node signifies that a 
node is comprised entirely of material 1, 2 or 3. (Recall that the properties of the 
materials is established via the input. ) And a two-digit material number signifies that 
the node is at an interface between two materials, with the tens digit giving the 
material number for the upper material and the ones digit the material number for 
the lower material at the interface. For example, node 54 is located at the inter- 
face between the beryllium and the insulation, since beryllium has been set up to be 
material 1 and the insulation to be material 2 we find the material number of node 54 
to be 12. Material numbers are set up by subroutine X-24C and they provide a check 
on whether geometry data has been inpi.‘, correctly to CAVE, (The input and output 
listings on the following pages have been annotated. ) 
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1% 
R”2N NO!3N5.2 X&C CEOMETRYV COMMENT CARD 

3 
c- NO RADIATION 

7 11.. t- 3 PROPERTIES 
450. 500. 625. 750. 075. 

.0322 .03056 

.36 ..O 

-0:::: .02... .0222 

.s.o .s7s 
.o;;i ] PROPERTiES OF MATERIAL 1 AS FUNCTION OF 1 

0 3”. .“00”06 .2. t---PROPERTIES OF MATERIAL 2 
HATERIAL 3 0 

.03 
.03 

.015 
.03 
.29 
.03 

A 
‘““,” 

1 
Ill”0 

20. 
1.. 

172.0 
.Ol 
.Ol 
.03 
.03 
.18 
.03 

.005 
3 

66.0: 

.0222 
.03 
.03 
.03 
.03 
.10 
.03 
.02 

,A 1 

.215 .Ol .03 .03 .01 PROPERTIES OF I 
.Ol .03 
.03 .03 .03 ."3 
.03 .O,S 

NODAL GEOMETRY DATA 
-0.  1 

GNED TO EACH COUP 
0. 

53.3 

;a3 .15 .03 .06 .02 - CONT/ACT RESISTANCES 

) INITIAL TEMPERATURE 
- MATERIAL NUMBERS ASS1 

- REFX COOEX HMODI 
-AIR PkOPERTiES ‘40.4 120. 

7*000. 5841.45 ,;:yf,“; I FLIGHTTRAJECTORY 
20. 20. 

5 
4.0000: 522:03 

. 
2904;i?4 

4453.2: 
. 20. 

6.6362 5077.7 
20. 

7 
0. 10. 20. 30. 40.. 60. -‘2”. I _. TIME STEP LNTERVALS ARRAY 

, 

IONENT 
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$&g+ 
& 

CP 
$%9 

&W 
$ip-” 

ci+ 
8’ # 

********************** 
: CAVE c 0 0 E : 6 

9 
& 

J 
:********************: & 

NO. OF NODES 
13 SURFACE FLEHENTS-- 13 ROWS R” 13 Ci-lL”“NS ClVES b’ 1 9 ELEYENTS J DOMINANT HODES...REcl”,RES 52m WORDS OF YELl0.w 

FC”N”N”YIZF...RFb”CE “lYENSl”N “F 5 AND VALUE OF Hl”R”S FR”M m4~-VALUE REQUIRED FORTHISPAOBLEM 
l~“~~~~~~~~~EST~~ IN CAVE **************t~~**********************************~*************************************************~****************** 

************************************************************************************************************************ 

x 2 4 c GE”YETR)Y 

: 
1: 
: 

*: 

0.300”E-0, 
ll.,bOOF-0, 

0.300OF-01 
0.3000E-01 
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****************************************** 

Y A 

MlTERllL I R”0=114.00 LBM/C”-FT 

TEBllL PF1OPERTIES FIRST MATERIAL K:=0.03220 BTU/SEC-FT-DEG.R CP=0.3600 RT”/LRH-DEG..9 
K=0.“3Lls6 BTU/SEC-FT-DEG.R CP=Ll.4clocl RT”,LOY--DEG.R 5: i;i:gi !!$:I (BERYLLIUM) HAS 
K=0.02722 RTU/SEC-FT-DEG.e CP=O.O.sRO BTIJILBM-DEG.R . . 
K=o.02014 RT,,/SEC-FT-DEG.R CP=o.s40cJ RTI,/LRY-“EG.R T= 750.00 DEG.62 TEMPERATURE 
K-0.022Rtl RTII,SEC~FT-“EG.R CP=0.5750 BT”/LRLI-DEG.R T= R75.00 DEG.R 
1(=0.0*700 ElTII/SEC-FT-DEG.R CP=O.6400 RTII,LRH-DEG.R T=1250.00 “E&R DEPENDENT 
1(=0.0,*90 RTLI/SEC-FT-DEG.R cP=o.8300 RTVILRH-DEG.R T=2500.00 DEG.R PROPERTIES 
1(=0.00001 Rlw/SEC-FT-DEG.&? CP=0.2000 RTWLRM-DEG.R - 2N0 MATERIAL (INSULATION) 
K=0.o222O BTU/SEC-FT-DEG.R CP=O.7ITO RTWLRH-DEG.R-3RO MATERIAL (ALUMINUM) 

FLIGHT 
TRAJECTORY 
TABLES 

N”l-tlL NETWORK PRINTOUT HAS 

/ 
FORMAT SIMILAR 
TO SHAPE OF GEOMETRY 

69.” 
70.0 
7, .O 
72.0 
73.0 
74.0 
75.” 
76.0 
77.0 

95.0 
96.0 
97.0 
9A.0 
99.0 

100.0 
101.0 
102.0 
103.0 

i: 25.0 _ 26.0 -.., 3.9.” 39.0 51.0 52.0 64.0 hS.0 
90;0 

78.0 9 .o 100.0 117.” 1x0& v 
ROW / C”L 12 ,3 

: 140.0 157.0 
lb5.0 15R.0 

: 00 
0:0 

0 
a:” 

5 

: i:“, 
go:: 2,” 

. 

8 ::i 0”:: 0.0 :.: 0.0 
10 

:: 
13 
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ii 

CAPACITANCE AT EACH NflOE 
ROW / cot. 

: 
3 

t 

t 
8 O.lllE-01 

O.lllE-01 
:: O.IlIE-01 

O.IllE-01 
12 
13 

ROW / cm 

: 
3 

: 
; 0.0 0.0 0.0 

t 
8:X 
0.0 $% . 

:t 
12 
13 o.ssTe-02 

i 
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1 O.,9”E-01 0.19.3E-0, D.,QAE-0, O.,9RE-0, O.,32E-0, 
0.” 0.0 cl. lh7E-0, O.I67F-0, O.lllE-0, 

i:,” 0”:: 
O.,hbE-“, O.lOhE-Cl O.ZZZE-0, 
00 
a:0 

1)o 
0:0 

O.lllE-0, 
0.0 0.0 0. 0.0 0.0 cl.0 0.0 0.0 E ::: ,“:,” ,“I,” 0.0 0.0 
0.0 0.0 0.0 0.0 1 O.,,,E-0, 
O.lhhF-“, O.l66E-01 O.lhhE-0, O.,h6E-“l 0.222E-0, 
0.333E-01 0.333E-0, 0.333F-01 0.333E-0, 0.222E-0, 
“.lhhE-“, O.l66E-0, O.lhhF-0, 0. ,hhE-0, O.,llE-0, - 

O.l98E-01 
0.,67E-01 
0.333F-01 
0.333E-01 
0.333E-01 
0.333E-01 
0.333E-0, 
0.333E-01 
0.333E-01 
0.333E-Cl, 
0.333E-0, 
cl.,66E-0, 

O.,32E-0, 
O.,llE-0, 
0.222E-01 
O.l,,E-0, 

i:: 

,“:: 
O.IllE-01 
O.ZZZE-0, 
O.ZZZE-0, 
O.ll,E-0, 

O.,9F)E--0, 0.19BE-01 
O.lhTE-0, 

0-‘67Ez1 O.l66E-0, 0 
0.” 

k,” ii:: !l!sGz 0.0 
0”:: 

0.0 
O.lhbE-01 O.lbbE-01 
0.333E-01 0.333E-0, 
O.,hOE-01 D.,6hl=-0, 

“ill I C”L I 
“.,9R;-o, D 

IL L .I 

: 
.,9LE-0, 0-c 

0.992E-02 O.,9RE-0, 0.0. 
3 0.0 . 

: 
0.0 

. ,“:: ZERO VALUES SINCE THERE 
h 
;: 2,” 2,” ARE NO NOOESTOTHE 
9 RIGHT OF THESE 

t: 
1: O.l46E-0, 0.0 
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TFYPERATVRE “lSTRlEwTlON DEG.R 

***** 7 I M F = 0.100”F “2 5 E C 0 N n S *****- ISTTIME 
X"*CH= 3.RO" ALTTTIIOC:: 4A136.S “EL”C,TY= 307n.70 ANGLE Of= ATTACK= 20.0- FLIGHT CONDITIONS 

ATTlME=lOSECONOS 



AVERAGE 

Ro: / cnL 
5 

: 
5 

: 

: 
10 
II 

:: 
ROY / COL 

1 

: 

IVERAGE 
I?“‘# / C”L 

: 
?, 4 
2  
:, 
9 

1” 
iI 
:: 

Q"Y / C"L t 

“FG.R 

11~2.1 
“.D 

. 
t.0” 

::,” 

/ 
AVERAGEOFHAATTlMEOANO10. 

._ 



‘ERA 
COL 

‘S AT T”,S TIME DEG.!? 
1 2 3, 4 5 6 

720 5 
714:n 

720 1’ 
714:3 

719.0 719 5 
7,316 

719.. 
713.9 713.6 

659.3 (559.3 659.3 659.3 659.3 
659.3 659.3 659.3 659.3 659.3 

.Ll Cl.0 659.4 659.9 
::: 2,” ,“I,” ::: t::‘: 659.7 659.5 

::: 0”:: 0”:; 00:: 660.1 e.59:9 660.L 659.9 660.1 h59.9 

0.0 660.2 
L- 

660.4 660.3 660.3 ~%‘~ . 
660.4 660.4 660.3 660.3 
660.4 660.4 660.4 660.4 

M”” I C”L 

/ 
TEMPERATURE AT TIME 10 SECONDS 

7” ::,” 60:: ::: 

: i:,” 0”:: i?,” 
10 0.0 0.0 0.0 STEADY-STATE TEMPERATURES FOR 
I: OhO.‘I 660 660:: h60 4 

%-: 66”:a BOUNDARY CONDITIONS FORTHISTIME 
13 . 660.4 hO0.b / INTERVAL FROM 0 TO 10 SECONDS 

STEADY-STATE TELIPFSATIIRES FOR THE R”,,NDAlRY C”N,,,T,“NS AT TH,S TlYE 0EG.R 
Rl-lY / COL Ilk,., 2 3 a 5 6 7 R 9 

: llr(2.1 llR2.1 02 t ,187 1 
::R2:1 1’8i:l 

11.32 v 
11fl2:1 

1182 
1182:: 

e2.1 
::n2.1 

1 lR2.1 
‘10R2.1 I 

llR2.1 llA2.1 
::z-: 1142.1 . 

1 lR2.1 llRP.1 
: 0.0 

::: 

0:o 0 0 llR2.1 1192.1 llR2.1 1 LPP.1 
11fl2.1 

1182.1 li82.1 llR2.I 11RZ.l lIR2.1 llR2.1 llR2.1 llR2.1 
118P.I 

5 0.” 0.0 1182.1 llR2.1 I IR2.1 llR2.I J 0.0 
h 0.0 0.0 0.” 

---E--L . llR2.1 
.O IIR2.1 11R2.l 1lRZ.l “.” n.0 

: 6):: 2,” ::,” 2: i:,” 
llR2.1 “R~., lIR7.1 
11R2.1 llR2.1 llR2.1 On:: It:,” 

9 0.” 

E:,” 

0.0 0.0 0.0 ,182.’ llR2.1 llRZ.1 0.” 0.” 

1” 1lRFS.l 0 0.0 0.0 
rll.52.l llR2.I 11R2.1 1,RZ.l llR2 I 0. 

:: IlR2.1 llR2.1 ‘182.1 1183.1 11.92.’ 1182.1 11.32.’ 11nt:: 11AZ.C 
llA2.1 1182.1 1IAZ.l llR2.1 11.s2.1 IlAZ.! llR2.1 llR2.1 118?.1 

13 11R2.1 ,102.l 11R3.1 11R2.1 llR2.1 11,92.1 IlR2.1 ,,n2.* llR2.1 
Y ’ cnL 11 12 13 

IIA? I lld2.1 llk2.1 
2 llA2:l llR2.1 IlR2.1 
3 llR2.1 I 0.0 0.” 

1 2 y . ;:I . i:% . 
: ::: 06:: i?: 
9 

10 ::: 0”:: X:X 
:: llR2.1 1182.1 11R2. * 

1182.1 llR2.1 1102.1 
13 / llR2.1 1182.1 llR2.1 1 
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INTEGRATED 
ROW / COL 

AT Y” NoDE 
k”o 0.0 
,“:8 
00:: 
00:: 
0”:: 
0.0 
0.0 

12 
I.” 

2,” 

2,” 

2: 

Q:i 
. 

0.” 

0”:: 

5 b 
2.9 2.9 

7 I  I” 
h:“, 0.0 
82 0.0 0.0 
00:: 0.0 
“,-z 0:” 

1 

: 
4 
5 

1.” 
200 
i:p . 
k”o 0.0 . Lo” . :.: 

-2.9 

0”:: 

x:0” 

00:: 

::: 
0.0 
0.0 

,“I,” 

0”:: 
0”:: 13 . ;.z 0.0 
k,” 
0”:: 
0”:: 0.” Q.” 
::,o 

il 

:: 

, NEXT TIME 

***** T I u F = “.2”““F 02 s E c ” N 0 5 **a** J 

XHACH- a .h”P ALT,TllnF= 52273.” “FLnCITY= 4453.2(1 ANGLE “F ATTACK= PO.“” 

0.242-Q’ 0.0 
::: 
::: 
i:“, 
k”, 
Z:“, 0.0 

0”:: 
It:: 0.” 
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Section 5 

GENERAL GEOMETRY 

5.1 DISCUSSION 

This section describes the general geometry capabilities of CAVE and gives the 
input data format. 

men exercising the general geometry option of CAVE, the user must do the 
usual tedious and laborious calculations associated with setting up a thermal network. 
Namely, the volume of each node, the cross-sectional area divided by the X distance 
between adjacent nodes, and the cross-sectional area divided by the Y distance 
between adjacent nodes all must be supplied as input data to the code. The code will 
then multiply the volumes by p Cp to obtain the node capacitances. The area over 
distances will be multiplied by the thermal conductivity to obtain the conductances. 
Multimaterial problems can easily be handled by supplying capacitances instead of 
volumes and conductances instead of area over distances as input data. The material 
properties p , Cp and k should be input as 1 in this case. 

It is possible to simulate within CAVE a convection coupling, either constant 
or time varying, to each node. The values of the couplings are supplied as input 
data. Radiation heat transfer is not considered by CAVE when the general geometry 
option is selected. 

The matrix package within CAVE is very efficient from both an execution and 
storage standpoint. This is made possible by some limitations that have been incor- 
porated into the package. Referring to Figure 13, the limitations may be stated 
as follows : 

1. There exists a conductance coupling between node I and node I + 1, e. g. , 
nodes 16 and 17. (Th e value of the coupling may be zero.) One exception 
is when node I is in the bottom row. For example, nodes 12 and 13 are 
not coupled. 
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I- X 

Y 

M 

1. 

20 

37 l 25 l 

89 14 0 26 l 

31 . 

32 l 

9@ 33 l 39. 15 l 

16 l 

17 l 

18 l 

10 l 22 a 34e 400 28 l 

29 l 

30. 

11. 23. 35 l 41 0 

36 . 42 ’ 12. 60 24 l 

FIG. 13 GRID NETWORK FOR A GENERAL GEOMETR? PROBLEM 
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4. 

There exists a conductance coupling between node I an-l node I + L where 
L is the number of elements in the Y direction, e.g. , nodes 16 and 22. 
phe value of the coupling may be zero .) One exception to this is when 
node I is in the right column. Since there is no node I + L, there can 
be no conductance coupling. 

Node numbering is done sequentially starting with 1 and going to n, the 
number of nodes. Numbers run columnwise starting at the top of the left 
column with 1, the node below it 2 and the node to the right of it 1 + L. 

No other conductance couplings exist. That is, node I will have at most 
couplings with nodes I-l, I+l, I-L and I+L. It cannot be coupled to any 
other nodes. 

The last assumption precludes, for example, a nodal network having the couplings 

shown in Figure 14. 

On occasion, fictitious nodes are present within the network. They are forced 
into the network by virtue of the above assumptions regarding the couplings. No input 

data is required for these nodes since they are not ar active part of the problem. 
Nodes 3, 4, 5, 19, 20, 2 1 and 27 (given in Fig. 13) are such fictitious nodes. 

To visualize the class of problems that CAVE can most readily accommodate, 
consider a rectangular grid network that gets cut up tr, form different shapes. If the 
grid network is drawn on a rubber sheet and that sheet is stretched at will, any 
resulting figure could be analyzed by CAVE. 

The following subsections give the input data format and definition of input 
variables for running a general problem. 
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TOO MANY 
COUPLINGS - 
NETWORK HAS 
BE REDEFINED 

TO 

FIG. 14 PORTION OF A GRID NETWORK THAT CANNOT BE HANDLED 
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5.2 INPUT DATA FORMAT FOR GENERAL GEOMETRY (Fig. 13) 

Basic Geometry Card 

0 JGEO, L, M, NE* 
JGEO = -1 (selects general geometry option) 
L = maximum number of elements in the 

Y direction 
M = maximum number of elements in the 

X direction 
NE = number of dominant eigenvalues to be used 

in solution (e.g. , a typical number is 3) 

Title Card 

0 Run identification, comments , etc. 
0 Blank Card 

(415) 

(5AlO) 

Material Properties Cards 

0 MAT (I5) 
0 NMATl, RHOl, CONAVl, CPAVl (IlO, 3F10.5) 
0 TMATl(l), TMAT1(2), . . . , TMATl(NMAT1) 

I 

omit (8E 10.0) 
0 CONDTl(l), CONDTl(2), . . . , CONDTl(NMAT1) if (8E 10.0) 

CPTl(l), CPTl(2), . . . , CPTl(NMAT1) NMAT1=O 0 (8E 10.0) 

(If MAT = 2 include the cards :) 

0 NMATB, RH02, CONAVB, CPAV2 (Il0.0,3F10.5) 

0 TMAT2 (1)) TMATB (2) ,- . , . , TMAT2 (NMAT2) omit (8ElO. 0) 

0 CONDT2 (1)) CONDT2(2), . . . , CONDTB(NMAT2) if (8ElO. 0) 
NMAT=2 0 CPT2(1), CPT2(2), . . . , CPT2(NMAT2) 1 (8E 10.0) 

MAT = number of materials (1, 2 or 3) 

NMATl = number of entries in properties table (maximum of 10) 
NMATl = 0 for constant properties 

RHO1 = density of material 1, lbm/cu-ft 
CONAVl = average thermal conductivity of material 1 (used when 

NMATl = 0), Btu/ft-set-“R 
CPAVl = average specific heat of material 1 (used when 

NMAT 1 = 0), Btu/lbm-“R 

*Current dimension limitations require that the product LXM not exceed 200. 
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TMATl(1) = temperatures in thermal properties table for which 
CONDTl(1) and CPTl(1) are given; I = 1, 2, . . . , NMATl, “R 

CONDTl(1) = thermal conductivity of material 1 at temperature 
TMATl(I) , Btu/ft-set-“R 

CPTl(1) = specific heat of material 1 at temperature TMATl(1) , 
Btu/lbm-“R 
NMATB, RH02, CONAVB, etc. , same as NMATl, 
RHOl, CONAVl, etc. , except applied to material 2 

(215,E10.0,215) 0 KODE, I, V(I), II, JJ 
l . . . 

0 . . . 

0 . . . 

0 11100 05) 
KODE = 0 or blank 

I = node number 

V(I) = node volume, cu ft (or optionally pVCp) , Btu/“R 

II = limit for multiple parameter input 

JJ = increment for multiple parameter input 
(The node number is incremented by the spacing JJ until 
the limit II is reached. Each node so specified is assigned 
the same temperature. ) 

Volume Cards 

Material Selection Cards 

(215,E10.0,215) 0 KODE, I, MATNUM(I), II, JJ 
0 . . . 
0 . . . 
0 . . . 
0 11100 (IS) 

KODE = 0 or blank 

I = node number 
MATNUM(I) = 1 to use material 1 properties 

= 2 to use material 2 properties 
= 3 when node is at interface between materials 1 and 2 

(interface is understood to be parallel to X-axis) 
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II 
JJ 

Area Over X Cards 

= limit for multiple parameter input 
= increment for multiple paremeter input 

0 KODE, I, AOVERX(I), II, JJ (215,E10.0,215) 
0 . . . 

0 . . . 

0 . . . 

0 11100 05) 
KODE = 0 or blank 
I = node number 

AOVERX(I) = cross-sectional area divided by X distance between 

II 
JJ 

Area Over Y Cards 

0 KODE, I, 
0 . . . 
0 . . . 
0 . . . 
0 11100 

KODE 
I 

node I and node I + L , required only for nonzero 
conductances , ft2/ft (or optionally, the conductance 
between nodes I and I + L) , Btu/sec-“R 

= limit for multiple parameter input 
= increment for multiple parameter input 

AOVERY(I) , II, JJ (215,E10.0,215) 

= 0 or blank 
= node number 

(I5) 

AOVERX(I) = cross-sectional area divided by Y distance between 
node I and node I + 1, required only for nonzero 
conductances , ft2/ft (or optionally, the conductance 
between nodes I and I + 1) , Btu/sec-“R 

II = limit for multiple parameter input 

JJ = increment for multiple parameter input 
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Convection Coupling Cards 

0 KODE , I, HA(l), II, JJ 
0 . . . 

0 . . . 

0 . . . 

0 11100 
KODE 
I 
HACI) 

II 
JJ 

= 0 or blank 
= node number 
= convective coupling between node I and TAW(I) , 

Rtu/sec-“R 
(or optionally, a negative number to indicate that 
the coupling is time varying. The absolute value 
of the negative number is then the number of the 
dependent variable in the convection table that 
gives HA(I) as a function of time) 

= limit for multiple parameter input 
= increment for multiple parameter input 

(215,E10.0,215) i 

(15) 

(215,E10.0,215) 0 KODE , I, TAW(I) , II, JJ 
0 . . . 
0 . . . 
0 . . . 
0 11100 (15) 

KODE = 0 or blank 

I = node number 

TAW(I) = adiabatic wall temperature associated with node I, “R 

(or optionally, a negative number to indicate that the 
adiabatic wall temperature is time varying. The absolute 
value of the negative number is then the number of the 
dependent variable in the convection table that gives TAW 
as a function of time) 

II = limit for multiple parameter input 

JJ = increment for multiple parameter input 

Adiabatic Wall Temperature Cards 
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5 jt 
Convection Table Cards 

4 
j 0 KODE, Ll, L2, TITLE 
I 
\ l TIME(L), TIME@), . . . , TIME(L1) 
:1 0 Dl(l), D1(2), . . . , Dl(L1) 
q 
7 l D2(1), D2(2), . . . , DZ(L1) 
6 0 . . . 

(315 ,A65) 
(7ElO. 0) 
(7E10.0) 
(7E 10.0)’ 

(7E10.0) 

(I51 

0 . . . 

0 . . . 

0 DL2(1), DL2(2), . . . , DU(L1) 
a 11100 

KODE = 0 or blank 
Ll = number of values of time, the independent 

variable (Ll I 25O/L2) 
L2 = number of dependent variables (1 I ~2 I 20) 
TIME Q) = time in convection table I = 1, 2, . . . Ll, set 

JW) = first dependent variable to represent either 
HA or TAW associated with a node or nodes 
at TIME(I) 

0 . . . 
0 . . . 
0 . . . 

Du (I) = last dependent variable to represent either HA or TAW 
associated with a node or nodes at TIME(I) 

Initial Temperature Cards 
0 KODE, I, T(I), II, JJ (215,E10.0,215) 
0 . . . 

0 . . . 

0 . . . 

0 11100 
KODE 
I 

05) 
= 0 or blank 
= node number 
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T(I) = node initial temperature, “R 

I 

the node number is incremented by the spacing JJ 
IIandJJ = until the limit II is reached. Each node so specified 

is assigned the same temperature 

Time Interval Cards 

W-2 
(8ElO. 0) 

0 NTIMES 
0 TIMES(I), TIMES(Z), . . . . . . TIMES(NTIMES) 

NTIMES = number of points in time intervals 
array (2 5 NTIMES 5 50) 

TIMES (I) = initial time (usually equals 0. ) , set 
TIMES(I) = time at which temperatures will be calculated 

and printed out I = 2, 3, . . . , NTIMES, set 

5.3 SAMPLE PROBLEM FOR GENERAL GEOMETRY (Fig. 15) 

The general capabilities of CAVE are illustrated via the simple grid network 
shown in Figure 15. While CAVE can handle much more arbitarily shaped geometries 
than this one, all the basic ingredients are present here. 

As Figure 15 shows, two materials were used: a layer of beryllium across the 
top that was being aerodynamically heated and the remainder aluminum with a portion 
of its boundary being cooled. The convective coefficients and adiabatic wall temper- 
atures associated with the aerodynamic heating are shown as functions of distance and 
time in Figure 15. The values of hAX and TAW for the different times at nodes 1, 9, 
17, 25 and 33 were provided as input data to represent the aerodynamic heating. 

The following pages present listings of the input data used for this problem and 
the resulting output data. The input data for this general type of geometry is seen 
to be more extensive than for one of the built-in configurations. This is due to the 
need to input for each node a volume, material number, condition area over distances, 
convection coupling and adiabatic wall temperature, in addition to the usual material 
properties initial temperatures and time step intervals. 

The output from CAVE for a general geometry problem is very similar to that 
of a built-in geometry. At the end of every time interval there is a printout of the 
convection couplings, adiabatic wall temperatures, steady-state temperatures and 
integrated heat inputs. No printout of convective coefficients appears since the 
general geometry option deals strictly with the coupling, h A x and not with h alone. 
(The input and output have been annotated to assist the reader.) 
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TIMEVALUES 
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TABLE2KONVECTIVECOUPLlNG FORNODE 11100 0 a 10 .="llC,NG F"NCT,ON TARLE TABLE3 (CONVECTIVECOUPLING FORNOOE17) 
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.*t****t************** 

: CAVE CODE t 

NO SIGNIFICANCE 
:I*******************: 

Y 
MAX. NODE NO. OF EIGENVALUES 

SURFACE ELEMENTS-- k”., 81 ktX,,..S G,“ES .f%!!!T%R S<OY,NANT YODES...REOUlRES ,194 WORDS OF YEYDRY 
ECoNONn*IZE...REDUCE nrYENSlON OF s AND “ALIIE OF YlnRnS FR”” 12 00 TO”AROS 

K 
137~- VALUE REOUIREO FOR THIS PROBLEM 

VALUE REOUESTED IN CAVE +****************+****************************************************************************************************** 

R,fN NO. Pd.., GENERAL GEOYETRY PmmLEY RE ANO KC- COMMENT CARD 

**********t*~**************************************~.~**********************************~******************************* 

GENERAL GEOYETR” PROI)LE* 

0.0 
0.3 
0.0 

X2 
0.0 
o.ah000oE 03 
0.4h0000E "3 
0.460000E "3 
0.&60000E 03 
0.400000E 03 

10 
O.:OooOOIE 03 
0.4000OOE-03 
O.3”5000E-03 
0.3*,000E-03 
0.2770006-03 
0.700000E-03 
0.120000E 06 
O.,,1)5OOE 04 
O.,,41OOE 04 
O.10770OE 04 
0;100000c nr 

TIRLE F”R HA AN-J TAN 
F”RCING FL,NCTl”N TARI-E 
0.200000E 03 O.lOOOOOE 04 
0.00OOOOE-03 0.600000E-03 
0.577000E-03 0.577000E-03 
O.S,PO”OE-03 0.5.1 ZOOOE-03 
0.415000E-03 O..,5000E-03 
0.3000OOE-03 0.300000E-03 
0.800000E 04 O.ZOOOOOE 04 
O.,9(1200E 0. 0.190100E 04 
O.,SS~OOE 0. O.l.SS.OOE 0. 
O.,691”0E 04 0.169,OOE 04 
0.150000E 04 0.~50000E 04 

*****+*******~+**L*****.************************************************************************************************ 

MATERIAL PROPERTIES 

YATERlAL 1 RH0=114.00 Lol4/c"-FT Y=O.O3220 BTU/SEC-FT-0EG.R ck0.3606 RTu/L~Y-DEG.R T= 050.00 DEG.!? 
Ks0.03056 BTU/SEC-FT-0EG.R CP=0.4000 OTUARY-0EG.R T= 500.00 0EG.R 
1(=0.02722 BTU/SEC-FT-0EG.R CP-0.4850 RT,,/L”Y-0EG.R T= 625.00 DEG.62 
1(=0.0240. BTU/SEC-FT-0EG.R cP=0.5400 OT”/LRY-OEG.R T= 750.00 0EG.R 
K=O.02220 BTU/SEC-FT.-OEG.I cp=o.s7so RTU/LRY-~EG.R T= 875.0” OEG.R 
K=O.O,,OO BTU/SEC-FT-0EG.R CP=O.b400 BT”/LRY-0EG.P T=,ZSO.OO 0EG.R 
K=O.0,190 BT”/SEC-FT-0EG.R CP=O.S,OO RT”/LRY-0EG.R T=ZSOO.OO “EG.R 

MITEII&L 2 RHO=,72.S0 LEN/C”-FT K-0.02220 OTl!/SEC-FT-0EG.R c~=o.21So RTWLRY-DEG.~ 

c 1 
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APPENDIX A 

DESCRIPTION OF THE HYBRID ANALYTICAL-NUMERICAL TECHNIQUE. 

This appendix presents a brief summary of the Hybrid Analytical-Numerical 
(HAN) technique using, as an example, a one-dimensional, finite thickness, conduction 
problem. This application provides two services. First it provides a clear exposition 
of the HAN technique with its attendant matrix operations; and second, it provides 
insight into the accuracy of the.technique since an exact solution to the problem is 
known. The effect of retaining only the dominant eigenvalues and eigenvectors (E & E) 
on the accuracy of the solution can be clearly assessed. In NASA CR-2435, Maise 
and Rossi thoroughly investigated the effect that the number of E & E’s have on the 
accuracy of the h predicted for the inverse problem. In addition, for a direct prob- 
lem at a particular time, they show the typical er ,*ors incurred by neglecting 
subdominant eigenvalues in a very simple model problem. This appendix 
explores how the incurred errors vary as a function of time. The solution to the 
sample problem was obtained using a specially prepared ‘computer code to perform 
all of the matrix operations and companion calculations. The solution provided a 
completely independent check on the eigenvalues , eigenvectors and temperatures 
generated by CAVE. 

The problem considered was that of a slab heated by convection on one face and 
perfectly insulated on the other face. Figure A-l shows the lo-node network selected 
to solve the problem; also shown are the properties, temperatures and dimensions 
used. 

In the HAN method, spatial derivatives are replaced by their appropriate finite 
difference representations and the temporal derivatives are retained as ordinary 
derivatives. In effect, the problem is subdivided into a number of uniform tempera- 
ture systems or nodes that are coupled and changing in temperature. Utilizing the 
notation of Appendix F , the set of ten, first-order, linear, ordinary differential 
equations for the temperatures at the ten nodes can be written as: 

Mi=BTf_F Eq. (A-la) 
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subject to the initial condition, 

100 ’ 
. 
. 
. 
. 

I 
. 

. 

100 , 

Eq. (A-lb) 

The matrix is a 10 x 10 diagonal matrix associated with the heat capacity 
of the nodes and is given by: 

M= 

- 1.65 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 3.30 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
9.0 0.0 3.30 0.3 3.0 0.0 3.r) 0.3 0.0 7.0 
0.0 0.0 0.0 3.30 0.0 0.0 0.0 0.0 f-I.0 0-r) 
0.0 0.0 0.0 0.0 3.30 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 3.30 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 3.3r) 0.0 0.3 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.39 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 3.30 0.0 
0.0 0.0 0.0 0.3 0.0 0.0 0.0 0.0 0.0 1.65 

where, 

M11 = M10 10 
=L+ 

Mii =AxPCfori=2, 3, . . . 9 

The matrix B, also 10 x 10 in size, is associated with the heat transfer 
couplings between nodes and is given by: 

B= 

-2000. 
1000. 

0. 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

1000. 
.2000. 
1000. - 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

0. 
1000. 

-2000. 
1000. - 

0. 
0. 
0. 
0. 
0. 
0. 

0. 
0. 

1000. 
~2000. 
1000. - 

0. 
0. 
0. 
0. 
0. 

0. 
0. 
0. 

1090. 
-2000. 
1000. - 

0. 
0. 
0. 
0. 

0. 
0. 
0. 
0. 

1000. 
-2000. 
1030. - 

0. 
0. 
0. 

0. 
0. 
0. 
0. 
0. 

1000. 
2090. 
1000. - 

0. 
0. 

0. 
9. 
0. 
0. 
0. 
0. 

1000. 
2oocl. 
1000. - 

0. 

0. 
0. 
0. 
0. 
0. 
0. 
0. 

1000. 
2oc)cJ. 
1000. 

3.’ 
0. 
0. 
0. 
0. 
0. 
0. 
0. 

1900. 
-2000. 
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where, 

i=2,3, . . . 9 

b.. = -2k 
11 

-k 
b10 10 = EC 

b k = 
i,i+l b =- 

i+l,i Ax i=l, 2, . . . 9 

The ten-component column vector _F, represents the forcing function in the 
problem. It is given by: 

F= 

200 000 
0 
0 
0 
0 
0 
0 
0 
0 
0 

where, f I = h TAW 

The ten-component volume vector T represents the temperature at the ten 
nodes at any instant of time. The vector T is the time derivative of T. 

From Appendix F, the analytic solution to the initial value problem (A-l) is 
given by: 

T =T +M-1’2 -W V exp (At) VT M 1’2 (Tinit 3,) Eq. (A-2) 
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where, 

T --a0 = the steady-state solution to (A-l) 

A = a diagonal matrix formed with the eigenvalues X i of matrix A 

V = a matrix of eigenvectors of matrix A 

and, 
A = defined by A = M -l/2 BM-1/2 

Specifically, these quantities are given by: 

T = --oo 

r 200 
. 
. 
. 
. 
. 

1 . . i J . 
200 

-7.48 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 -67.34 0.0 0.0 0.0 0.0 0.0 0.0 0.7 0.0 
0.0 0.0 -185.27 0.0 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 -352.85 0.0 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 -553.36 0.0 0.0 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 -764.06 0.0 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 -959.34 0.0 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0-1113.2 0.0 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0-1200.5 
0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

! 

0.0 
0.0 
0.0 
0.0 

0.0-1463.2 

A= 

V= 

-0.138 -0.357 0.455 0.444 
-0.203 -0.445 0.363 0.058 
-0.263 -0.435 0.049 -0.396 
-0.316 -0.328 -0.295 -0.388 
-0.362 -0.148 -0.459 0.971 
-0.399 0.065 -0.342 0.448 
-0.426 0.263 -0.017 0.303 
-0.442 0.403 0.319 -0.194 
-0.317 0.321 0.325 -0.329 

-0.235 -0.233 -0.214 -0.166 0.067 -0.841 
-0.361 -0.244 -0.126 -0.038 0.002 0.493 

0.269 0.457 0.451 0.299 --0.099 -0.204 
0.408 0.006 -0.399 -0.462 0.192 0.085 

-0.198 -0.460 0.014 0.475 -0.278 -0.035 
-0.442 0.234 0.382 -0.332 0.353 0.015 

0.3.21 0.338 -0.460 0.081 -0.415 -0.006 
0.463 -0.410 0.154 0.196 0.461 0.003 

-0.041 -0.124 0.200 -0.409 -0.489 -0.301 
-0.333 0.336 -0.340 0.346 0.352 0.001 

where the columns of V are eigenvectors of matrix A. 
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For computational purposes the solution (A-2) is best written as: 

z= _Tm +c_pm Eq. (A-3) 

where the matrix C is given by 

Here D is a diagonal matrix constructed from the components of the column 
vector _R, defined by: 

E = vT M112 
q&-T& 

That is, the diagonal elements of D are given by: 

dii = ‘i 

The time dependent column vector ,P is given by: 

,p w = 

* exp (-7.48t) 
exp (-6 7.34t) 
exp (-185.3t) 
exp (-352.9t) 
exp (-553.4t) 
exp (-764. It) 
exp (-959.3t) 
exp (-1113.t) 
exp (-1201.t) 

c exp (-1463.t) 

That is the ith , component of _P is given by: 

Pi = exp (A# 
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The matrix C for the particular problem being considered is given by: 

C= 

-1'9.47 -16.04 -11.80 -8.42 -6.03 -4.32 -2.90 -1.50 -0.23 -29.29- 
-38.70 -30.29 -20.00 -11.93 -6.56 -3.19 -1.21 -0.25 -0.00 12.13 
-56.98 -37.82 -15.96 -1.55 4.89 5.98 4.32 1.91 0.24 -5.03 
-73.85 -36.94 -2.17 10.63 7.41 0.07 -3.82 -2.96 -0.46 2.08 
-88.89 -27.85 12.95 10.44 -3.60 -6.02 0.14 3.03 q.67 -0.86 

-101.74 -12.58 20.15 -1.91 -8.03 3.07 3.66 -2.12 -0.85 0.36 
-112.08 5.50 15.03 -12.04 2.21 4.42 -4.41 0.52 1.00 -0.15 
-119.66 22.34 0.73 -8.15 8.42 -5.37 1.45 1.25 -1.11 0.06 
-124.28 34.23 -14.03 5.23 -0.74 -1.62 2.68 -2.62 1.17 -0.03 
-125.83 38.51 -20.20 12.52 -8.55 6.21 -4.61 3.13 -1.20 0.02 

th Returning to Eq. (A-3) it can be seen that the temperature at the i node is 
given by: 

N 

Ti=Tai + c ‘ij exp (xjt) 
j=l 

Eq. (A-4) 

where N equals the number of nodes (10 in this particular case). 

For example, the temperature at node 1 is given by: 

Tl = 200 - 19.47 exp (-7.48t) - 16.04 exp (-67.34t) - 11.80 exp (-185.35t) - ;. . 
Eq. (A-5) 

while the temperature at node 10 is: 

~~~ = 260 - 125.8 exp (-7.48t) + 38.51 exp (-67.34t) - 20.20 exp (-185.3%) + . . . 

Eq. (A-6) 

An examination of the arguments of the exponential functions shows that the 
leading terms in the finite series dominate the sum. 

Two questions naturally arise: (1) how does the HAN solution given in Eq. (A-4) 
compare, both in form and accuracy, with the exact analytical solution; and (2) what 
loss in accuracy is incurred by retaining only the dominant E & E’s in the solution 
(i.e., the first few terms in Equation (A-4). These questions are examined in the 
following discussions. 
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The analytical solution to the problem  being considered is given by the 
solution to the partial differential equation: 

’ a2T _ 1 dT 
ax2 
- -zdt 

subject to the boundary conditions, 

-kyx (0,t) =h 

and 

$$ (L,t) = 0 

with initial condition, 

. 
T (x,0) = Tinit 

The solution to this boundary value problem  can be obtained by separation of 
variables in conjunction with Fourier series expansions or simply by looking up the 
solution to a similar problem  in Carslaw and Jaeger’s, “Conduction of Heat in 
Solids” on page 122. In either case, the solution is given by: 

T  @ ,t) = TAG + (Tinit - TAw 
00 2H set (P j) 

)C H(H+l)+P; 
cos [cc j(l-!$l exp (-BP t/L2) 

j=l 

Eq. (A-7) 
where the cc j satisfy the equation 

Ilj ta.IlD j = H (see Table 1 of Carslay and Jaeger, p. 491) 

and H=++ 



Eq. (A-7) shows that for a given value of x the solution is the form 

Ti (t) = TAW + 
c aij exp @jt) 
j=l 

Eq. (A-8) 

. 
where the i subscript is used to connote that the temperature is for a particular value 
of x and where 

a ij = F,it - TAW> 
9H sec(rj) 

H(H+l) + P; 

and 

Eq. (A-8) is identical in form with Eq. (A-4) except that in Eq. (A-8) the series 
is an infinite one rather than a finite one. (Note that Tao in Eq. (A-4) represents the 
steady-state solution at node i, which is in fact TAW). 

These 
It is instructive to compare the C,‘s with the aij’s and the hj’s with the bj’s. 
comparisons are shown in the.following tables for the two extreme locations 

for x, i.e. , x = 0 and x = L corresponding respectively to i = 1 and i = 10. 

i=l x=0 i=lO x=L 

i 'lj alj '1Oj alOj 

1 -19..47 -19.56 -125.63 -125:98 
2 -16.04 -16.63 38.51 38.80 
3 -11.80 -12.72 -20.20 -20.40 
4 -8.42 -9.33 12.52 12.46 
5 -6.03 -6.84 -8.55 -8.28 
6 -4.32 -5.10 6.21 5.83 
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The X j’s and bj’s are. indq endent of x. They are as follows: 

-7.48 -7.49 
-67.34 -68.19 

-185.27 -192.90 
-352.85 -385.43 
-553.36 -648.50 
-764.06 -986.60 

.-. 

. 

The comparison between the sets of constants is very good. This is to be 
expected since it is known that as the number of nodal points N approaches infinity the 
Cij ‘s will approach the aij ‘s and the A j’s will approach the bj ‘s , and, therefore, in 
the limit, the HAN solution approaches the exact solution. Hut the really pertinent 
question here is: how accurate is the lo-point HAN solution ? Figures A-2 and A-3 
address this question. They show comparisons of the HAN solution with the, exact 
solution at the front and rear faces of the slab. If all ten terms (i. e. , eigenvalues 
and eigenvectors) of the HAN solution are used, the temperatures calculated are 
virtually identical to those of the exact solution. As a matter of fact for times in 
excess of 0.05 hr, the first exponential term in the HAN solution compares with the 
exact solution to withino. 06OK, It is very interesting to observe that the shorter the 
time period of interest the greater the number of terms required to achieve a given 
accuracy. An alternative point of view to this observation is perhaps more significant. 
Namely, for a given number of terms or eigenvalues there is a minimum time period 
to achieve a certain accuracy. It may be noted that (A ~)~/a can be considered a 
characteristic time for the transient response of nodal elements. For this example, 
(Ax)~/, z 0.003 hr , and it can be seen that the time required for accuracy with only 
a few dominant eigenvalues is of the order of three times this value. A further note is 
that the typical explicit finite algorithm has a maximum time step (for the problem 
being studied it is 0.00165 hr) . This maximum time step arises from stability require- 
ments, and is not related to the accuracy considerations for the HAN method. 

Two things need emphasizing at this juncture. First, with the HAN method con- 
siderable computer machine time can be saved by calculating only those E & E’s that 
are llsignificant”. This was noted very aptly by Maise and Rossi in NASA CR-2435 and 
used by them in the CAPE code for the indirect heat transfer problem. As regards the 
direct heat transfer problem being solved here, Figures A-2 and A-3 show that for a 
time period of interest greater than 0.01 hr, it would be a waste of machine time to 
compute the fourth through tenth E & E’s since they would have an insignificant effect 
on the computed temperature. 
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The second item that needs emphasizing is that because the boundary conditions 
on the problem studied herein were constant with respect to time, it was necessary to 
obtain the E & E’s only once. Time varying boundary conditions will require periodic 
revision of the E & E’s to reflect the changes in matrix A. In essence, problems ; 
involving time varying boundary conditions are solved by. dividing the time interval 
into M subintervals within which the boundary conditions will be constant. Thus,there 
will be M subproblems with the initial conditions of one problem being the final 
conditions of the previous problem. Obviously, frequent revisions imply a small 
time period and hence more E & E’s to achieve a given accuracy. Some reflection on 
all of this reveals that the optimal solution (viz. , minimum machine time for a given 
accuracy level or maximum accuracy level for a given machine time) will be achieved 
by proper selection of the number of E & E revisions (or time steps) and the number 
of E & E’s to be calculated. The following table illustrates this point. In Table A-l, 
M represents the optimal number of E & E’s revisions and NE represents the optimal 
number of E & E’s. 

Table A-l. Mix of Constant Machine Time Solutions 

Time Period No. of 
Between E & E E&E 
Revision Revisions 

Long 

Optimal 

Short 

<M 

M 

>M 

No. of 
E & E’s Remarks 

>NE With long time period, do not need this 
many E & E’S Furthermore, the piecewise 
constant representation of boundary 
condition is ooor 

NE Number of E & E’s calculated consonant 
with the time period. Good piecewise 
constant representation of time varying 
boundarv conditions 

<NE Number of E & E’s insufficient to provide 
good accuracy for this short time period. 
Piecewise constant representation of 

~ I boundary condition is excellent 

'1'13 



The ‘optimal” values for M and NE depend somewhat on the particular flight 
trajectory, geometry, dimensions and materials being analyzed. For the missile 
and Hypersonic Research Aircraft problems that were analyzed during the develop- 

ment of the CAVE code, NE should be approximately 3 to 5, and M should be 
approximately twice the number of flight trajectory points input to the code. 

In summary, this appendix has presented the details of the HAN technique 
applied to a one-dimensional conduction problem. The HAN solution gave a near 
perfect comparison with the exact analytical solution of the same problem. It was 
seen that the HAN solution has a minimum time interval for a given accuracy level 
and number of E & E’s . Furthermore, we saw that there is an optimal number of 

time subdivisions and E & E’s for a specified accuracy level or machine time. 
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APPENDIX B 

I AERODYNAMIC HEATING EQUATIONS* 

Incorporated within the CAVE code are equations to predict the aerodynamic 
heat transfer that will occur at the surfaces of the leading edge and flat plate geome- 
tries. This appendix presents the equations that are used in subroutines OVLY20, 
LEES1 and FLATH. The equations are valid up to a Mach number of six or so, where 
real gas effects become important. Ambient pressure and temperature as functions 
of altitude are calculated in subroutine ATMOS based on the 1962 U. S. Standard Atmos- 
phere. The range of altitude is from sea level to 47 350 tn. 

Leading Edge Geometry 

Aerodynamic heating of the leading-edge geometry is handled in two steps: 
(1) the convective heat transfer coefficient at the stagnation point is computed in sub- 
routine OVLY20 and; (2) the ratios of the local convective values to the stagnation 
point value are calculated in subroutine LEES1 for all the surface nodes. 

The user can flag CAVE to use either a turbulent or laminar flow correlation 
for the stagnation point coefficient. 

For turbulent flow, CAVE uses Beckwith and Gallagher’s equation (B-l): 

%I 4/5 
=- Red/5 Pr 1!3 3/5 

2RN O” (sin A eff) 

*The reference 
nomenclature. 

Eq. (B-1) 

list is included at the end of this appendix; Table B-l gives the 
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where according to reference (B-2): 

Eq. (B-2) 

The effective sweep angle A eff is given in Reference B-3. 

A = sin -1 
eff [Sin ACos Q + sinacosAsin#J Eq. (B-3) 

with Q  being the angle of attack, # the dihedral angle and A the actual sweep angle. 

For laminar flow with a freestream Mach number less than two, CAVE uses the 
modified Lees equation for the stagnation point: 

ho=0.5 --& k* (36ti .) ‘ii-j 1’2 Eq. (B-4) 

where the * quantities are evaluated at 

%+* = 0.5 (T, +To) 

The velocity gradient term VA is computed using: 

Eq. (B-5) 

For freestream Mach numbers greater than two, CAVE uses Detra, Kemp and 

Ridell’s equation (Reference B-4) modified for effective sweep in accordance with 
References B-5 and B-6, to give the laminar heat transfer coefficient at the 
stagnation point : , 

ho = 2’f;40) ($f2 (&) 3’15 ~0s~‘~ Aeff 
crtO 

Eq. (B-6) 



where A eff is the effective sweep angle given by Eq. (B-3). 

With the stagnation point coefficient ho thus established, the distribution of 
convective coefficients around the leading edge is computed using Lees? formula 
(Reference B-7)) with assumptions of cold wall and r-T: 

h = h l-7 vi/” / _’ 

(dV /dS) ; 1 
0 e 0 

where 

FEE- pto ;I [2 s” e ?dj -1’2 
0 0 

. 

Maise and Rossi (Reference B-8) used this formula in subroutine LEES to obtain 
the distribution of h around the leading edge. The stagnation point value ho was an 
unknown in their problem and was found by the CAPE code given the temperature 
history of the body. Basically, this same subroutine (LEESl) has been incorporated 
in the CAVE code. 

To evaluate F quantitatively; the local flow conditions around the leading edge 
are required. These conditions are found using the modified Newtonian law in the 
subsonic region surrounding the stagnation point and using Prandtl-Meyer expansions 
downstream of the sonic point locations. Specifically, in the subsonic region the 
local conditions will be predicted by the following equations: 

27 
PO = Pt 

M8&u2$ - (Y-1) 

00 ‘+’ ] [(~-~)M$I~$#+?] +i- 

where 9 = 90” - Aeff 

The local pressure distribution is predicted according to Reference B-l: 

P, = PO0 + (p 
0 

- PO0 ) cos2e 

where 9 is the angle measured from the stagnation point. 
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Te 

a e 

‘e 

pe 

= Tta, / (1 + + ge) 

= J ‘y gcRTe 

= Me ae 

= P,/RT, 

In the supersonic region downstream of the sonic points the local Mach number, 
Me, is obtained via the Prandtl.-Meyer turning angle Y found from the following 
equations : 

v2= ul+ e2-e1 [ 1 
where 

v(M) = (Y+~/Y-1) tan 7 -’ &l/Y+l) (Mt-1) -tax?&& 

and 

[ 1 82 - .b, represents the change in flow angle. 
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With the local Mach number determined, the other pertinent flow properties are 
established using the following equations : 

-Y/Y-l 
‘e =Pt (1 

0 

++l Mz) 

Te 

Y-l = Tt /(I+2 
0 

a e = J--e 

ve = Me ae 

‘e = P, / RTe 

Flat Plate Geometry 

/ / 
/( / 

/ !e / PO3 
T,- . 

/ ‘e \I 
“e 

P 
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For flat plate geometries Eckert’s reference enthalpy method (Reference B-8) 
is employed to predict the heat transfer rate, i . e. , 

h= 
0.332~ * V, Cp 

(laminar flow) 
* l/2 Re Pr2’3 

Eq. (B-7) 

h= 
0.0296 p* Ve C 

R; i/2 pr 2/3 (turbulent flow) Eq. (B-8) 

The Reynolds number is based on the boundary layer length 1 . 

The subroutine FLATH calculates the local flow values to be used in the above 
equations based on oblique shock wave theory. That is, the shock angle 8 is found from 
solving the following cubic equation: 

Z3 + bZ2 + CZ + d = 0 

where, 

z = sin20 
M! 

b= - an +2 

Mz, 

- Y sin2cl 

C= ‘$+I + [i.$S12 + 21 sin2a 

d= CO9 a 
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I--- 

With the appropriate 0 selected for a weak shock, the other flow properties are 
calculated via the following equations: 

P, = P [ 
27 Mz, sin29 - (r-1) 

00 r+1 1 
[2Y M2m sin29 - (y-l)] [(r-l) M”, sin20 + 23 

T,=T, 
(r+1)2 M2, sin29 

sin’e + 1) 
l/2 

Ve=V* 1 

‘e = P, / RTe 

The subroutine TRANS establishes the laminar and turbulent regions using the 
boundary layer transition criterion shown in Figure B-l (Reference B-9). It is recog- 
nized that this criterion is not the final word on simple boundary layer transition 
criteria but rather representative of the best presently available. In light of this, 
the code is written so that as newer criteria are evolved they may be readily incor- 
porated into subroutine TRANS. For that matter, the entire aerodynamic heating 
portion of the code is written so that as the need arises to use more specialized 
equations, they may be easily substituted for those presented herein. 
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TABLE B-l. NOMENCLATURE AND UNITS 

Symbol Units ~~.~ 

a 

C IP 

d 

%  

h 

k 

L 

M  

P  

Pr 

q 

r 

R 

Re 

RN 

S  

T 

V  

a 

Y 

e 

A  

P  

P  

Speed of sound 

Specific heat at constant pressure 

Hydraulic diameter 

Newton constant 

Convective heat transfer coefficient 

Thermal conductivity 

Effective boundary layer length 

Mach number 

Pressure 

Prandtl number 

Heat flux 

Recovery factor 

Gas constant 

Reynolds number 

Nose radius 

Distance along surface 

Temperature 

Velocity 

Angle of attack 

Ratio of specific heats 

Angular position from stagnation point or oblique shock angle 

Wing sweep angle 

Mass density 

Viscosity 

ft/sec 

Btullbm-OR 

ft 

32.17 ft-lbm/lbf-sec2 

Btu/ft2-set-OR 

Btu-ft/ft2-sec-0R 

ft 

dimensionless 

Ibf/ft2 

dimensionless 

Btu/ft2-set 

dimensionless 

Ibf-ft/lbm-OR 

dimensionless 

ft 

ft 

OR 

ftlsec 

degrees 

dimensionless 

degrees 

degrees 

Ibm/cu-ft 

Ibm/ft-hr 

Subscripts 

A W  Adiabatic wall 

e Property at edge of boundary layer 

eff Effective 

(Continued) 
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TABLE B-l. NOMENCLATURE AND UNITS (Cont’d) 1 

Symbol 

Subscripts Kont’d) 

Units ’ 

0 Stagnation point 

r Recovery 

t Total condition (i.e., condition that would exist if fluid brought to rest isentropically) 

W  Wal I 

m  Free stream 

Superscripts 

* indicates fluid property evaluated at temperature T” given by 

T’ = T, + 0.5(TW - Te) + 0.22 (Tr - T,) 
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APPENDlX C 

LINEARIZATION OF RADIATION COUPLING 

Leading edges, cooled panels and slab geometries may involve radiation heat 
transfer at the surface. Typically the direction of heat transfer is away from the 
body, serving to cool it. An exact treatment of radiation within each time step pre- 
cludes an eigenvalue-eigenvector solution which depends on the problem being a 
linear one. Thus radiation heat transfer is given a linear representation with each 
time step in such a way that for the step size approaching zero the exact solution 
is produced. This appendix presents the linearization within each time step. It is 
the common one of modifying the convection coupling to account for the radiation, 
which typically amounts to a reduction in the convection coupling. 

Consider a node diagram for a surface node of a body. 

where 
hA = convection coupling 

UEA = radiation coupling 
kA 
L = conduction coupling 

TAW = adiabatic wall temperature of fluid (more properly referred to as 
recovery temperature of fluid) 

TR = background radiation temperature (usually taken as O"Kr 

TW = temperature of surface node 

TI = temperature of interior node 
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The heat transfer into the surface due to convection and radiation is 

Qin =hA(TAW-TW)+cxA(I’;-T;) 

This may be rewritten as: 

. 
s=(h+hR)A(-&yTW) 

where 

hR= 
o-c (T;: - T4w) 

crAW - TW) 

Eq. (C-l) 

Eq. (C-2) 

Eq. (C-3) 

Eq . (C-2) can be rewritten into the form used with CAVE : 

‘iin = heff A f-& - TW) Eq. (C-4) 

where 

h eff =h+hR Eq. (C-5) 

Since TR is usually taken to be OOK, hR will be negative and, therefore, the 
effective convective coupling heff will be less than the actual convective coupling h. 

The term hR is a linearized radiative coupling and it is in essence a correction factor 
to the convection coupling. Frequently, this correction factor amounts to less than 

5% of the convection coupling and is, therefore, of no significant consequence. On the 
other hand it is possible, particularly for high altitude trajectories, to have a 
relatively large correction factor, so large that the effective convective coupling is 
actually negative. A similar situation can occur late in a re-entry vehicle trajectory 
following peak heating. A negative h does not appear to pose any particular difficulty 
to the matrix routines within CAVE. However, a difficulty has been observed when 
h eff approaches zero (i.e., radiation coupling and convection coupling essentially 
equal). In these situations there are ill-conditioned matrices involved in the prob- 
lem solution and the cumulative effect of arithmetic roundoff becomes a serious 
matter in the eigenvector-eigenvalue iteration procedure within subroutine IJEN. 
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This difficulty has been observed on occasion with the manifestation of a failure 
within IJEN to obtain estimates for the eigenvalues and eigenvectors that were within 
tolerance. (A statement to this effect is printed out by CAVE. ) However, the temper- 
atures calculated appeared correct. This may be attributed to the eigenvector values 
being reasonable although not within tolerance and furthermore not being of great 
significance since the body is not changing very much in temperature due to the very 
small coupling between it and its environment. Double precision arithmetic would 
help to alleviate this “ill-conditioned” difficulty. 

One final item to be mentioned is that in calculating hR from Eq. (C-3), CAVE 
uses the temperature of the surface nodes at the beginning of time subinterval (end 
of previous time subinterval). Therefore, in problems where radiation plays an 
important role and where the surface temperatures are varying rapidly with time, the 
user should use small time submtervals (perhaps one fifth of the trajectory table 
time intervals), 
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APPENDM D 

PROGRAMMER ORIENTED DOCUMENTATION OF THE CODE 

This appendix presents the details of the CAVE organization and structure. A 
simplified logic flow diagram of CAVE is given in Figure D-l. 

CAVE is organized in a main program with 36 subroutines. The list of sub- 
routines is given in Table D-l together with the function of each subroutine and the 
calling routine. Figure D-2 presents the organization of CAVE in terms of the more 
important subroutine calls. 

Many subroutines are either identical to, or modified versions of, subroutines 
used in the CAPE code (NASA CR-2435)) which was developed by Maise and Rossi to 

solve the inverse problem of finding the convective heat transfer coefficient given 
temperature history information. A modified version of a CAPE subroutine has a 
slight change in name to avoid any possibility of the wrong subroutine being used, as 
would be the case if both the CAVE and CAPE codes were resident on the same disc. 
To illustrate typical name changes, consider the CAPE subroutines PCP, HETRA 
and SLAB; in CAVE these subroutines in modified form are referred to as PCP4, 
HETRAl and SLAB2, with no significance attributed to the integer value. 

Flow charts or descriptions for each subroutine are given in Figures D-3 
through D-26. For convenience and completeness, they are given for subroutines 
that are identical to the CAPE routines reported in NASA CR-2435 as well as the 
new subroutines. 

Sets of input data for check cases were presented in Sections 3 through 5 where 
the standard output for these were described. For detailed output that maps the 
iterations and eigenvalues, the flags LTE and MON must be set equal to +6 in state- 
ment cards within SIZE2 (normal values are -6). The detailed output refers to the 
iterations performed in the subroutine DESDAl and the subroutines that are called 
from it. The detailed output can be used to establish whether sufficient eigenvalues 
have been selected by the user since the detailed output shows the contribution of 
each term in the equation (Refer to Appendix A, Eq. (A-8) with the number of 

130 



nodes N replaced by the number of dominant eigenvalues NE): 

NE 
Ti=T, f 

i c Cij exp (h jt) 
j=l 

Each succeeding contribution should be smaller than the previous one, with the con- 
tribution of the last term being small in comparison with the accuracy desired for the 
temperatures. If this is not the case, NE should be increased and the problem rerun 
at the expense of increased computer time. 

CAVE prints out self-explanatory diagnostic messages for some of the errors 
that may be caused by faulty input data preparation. A diagnostic message “FAILURE 
IN IJEN” signifies a failure of the Jennings algorithm to converge within the maximum 
number of iterations in the subroutine IJEN. This message has been observed on rare 
occasions as a result of a matrix being ill-conditioned at a particular time in the flight 
trajectory where the radiation-convection coupling is approaching zero (refer to 
Appendix C) . In these situations the temperatures have appeared to be correct and 
the message has been ignored. If corrective action should be necessary it could in- 
clude the following: increasing the maximum number of iterations as given by NIJ 
in subroutine SIZE2 from its present value of 20; increasing the tolerance on the 
convergence test as given by TIJ in subroutine SIZE2 from its present value of 0.1; 
revising the time steps used to avoid this troublesome point in the flight trajectory; 
and as a last resort utilizing double precision arithmetic. 
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START 0 
INPUT: l GEOMETRY SELECTION 

. MATERIAL PROPERTIES 

. GEOMETRIC DATA, I 

I COMPUTE: 0 VOLUMES ASSOCIATED WITH NODES 
. CONDUCTION SHAPE FACTORS FOR NODES I 

INPUT: . INITIAL TEMPERATURES ([I 

L 

COMPUTE FOR EACH NODE: 

COMPUTE: AVERAGE CONVECTIVE 
COUPLING AND ADIABATIC WALL 
TEMPERATURE FOR THIS TIME STEP ’ 
FOR EACH BOUNDARY NODE 

MODIFY CONVECTIVE 
COUPLINGS TO ACCOUNT 
FOR RADIATION 

CALL MATRIX ROUTINES: . FIND EIGENVALUES AND EIGENVECTORS 
OF COEFFICIENT MATRIX 

. FIND TEMPERATURES AT END OF THIS 4 
TIME INTERVAL 

1 
WRITE:. MACH NUMBER, ALTITUDE, VELOCITY AND ANGLE OF ATTACK 

AT END OF THIS TIME INTERVAL 
. AVERAGE h, hA AND TAW FOR THIS TIME PERIOD 
. TEMPERATURES AT END OF THIS TIME PERIOD 
0 STEADY-STATE TEMPERATURES FOR THIS TIME PERIOD 

FIG. D-l SIMPLIFIED FLOW OF LOGIC IN CAVE 
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Table D-l. Subroutines Used in CAVE 

SIZEP’ 

OVLYlO’ 

PCP4’ 

SLAB2+ 

LEAD4” 

X24C 

GEN 

MATOUT 

XTABSl  

OVLY20 

LINFIT 

ATTAC2* 

LEES1 l 

NURED 

DINTK 

PROP 

PRPOUT 

XINTPI 

F LATH 

ATMOS 

POLRT 

Called By 

CAVE (main prog) 

SIZE2 

OVLYlO 

PCP4 

PCP4 

PCP4 

PCP4 

PCP4 

GEN 

SIZE2 

OVLY20,PROP 

ov LY20 

ATTAC2 

OVLY20 

OVLYZO 

OVLYZO 

OVLYZO 

OVLY20 

ov LY20 

OVLY20,FLATH 

F LATH - 

Main Purpose . . 

Computes storage locations needed. Compares to number requested 

Sets up arrays for PCP4 

Reads and writes property data, controls geometry 

Computes volumes and conduction shape factors for slab and cooled 
panel geometries 

Computes volumes and conduction shape factors for leading edge 
geometries 

Computes volumes and conduction shape factors for basic X24C 
geometries 

Reads and writes volumes and conduction shape factors for general 
geometries 

Writes material properties 

Reads tabular values of hA and TAW for general geometry problems 

Reads initial temperature distribution and flight trajectory. Controls 
problem solution, steps time, computes average convection couplings 
for each time step. Writes solution each time step 

Finds value from a table by linear interpolation 

Finds nude number closest to stagnation point and renumbers nodes 
as required by LEES1 

Computes ratios h/hsp and TAW variation around leading edge problems 

Reads tabular values of hA and TAW as functions of distance and time 

Finds value from a table using double interpolation 

Computes conduction couplings and mass specific heat product for 
each element given conduction shape factors and volumes 

Writes node numbers, conductances, capacitances and initial 
temperatures 

Finds values of several dependent variables from a table by linear 
interpolation on a single independent variable 

Finds h and TAW for flow over a flat plate 

Finds atmospheric pressure, temperature and density for given altitude 

Computes the roots of a polynomial 

(con timed) 
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Table D-l. Subroutines Used in CAVE (Cont’d) 

Natrta 

TRANS 

DESDAl 

IJEN+ 

EIGVC+ 

BFACS+ 

BSO LS+ 

ORNML+ 

HETRAl l 

RVORDR+ 

AORDER+ 

DISPLA+ 

PART+ 

DATE+ 

SWITCH+ 

SCAPR2+ 

Called By 
- 

FLATH 

OVLY20 

DESDAl 

DESDAl 

IJEN 

DESDAl,  IJEN 

IJEN, DESDAl 

DESDAl 

IJEN 

IJEN, RVORDER 

(Various) 

DESDAl,  PCP4 

PART 

DISPLAY 

(Various) 

‘Modified version of CAPE routine 

Main Purpose 

Determines whether flow over flat plate will be considered laminar 
or turbulent 

‘Calls eigenvalue and matrix routines. Calculates temperatures 
, 

Obtains dominant eigenvectors and eigenvalues of a given matrix 
(using Jennings method of simultaneous vector iteration) 

Prepares approximate guesses for the eigenvectors to start the Jennings 
algorithm iteration for the first t ime step 

Factorizes a banded positive-definite matrix 

Using the factors of a given banded positive-definite matrix A  as 
generated by BFACS solves for X  in the system AX = Y  

Carries out the standard Gram-Schmidt orthonormalization of a 
group of vectors 

Sets up coefficient matrix (of conductances) in compact form 

Reorders estimated eigenvalues according to magnitude 

Sets up permutation indices needed for ordering the eigenvalues 

Prints information, mainly debug special output, in array form 

Prints debugoutput information and intermediate timing of calculation 

Determines data of run 

Converts columns of a matrix to rows or visa versa 

Computes scalar product of two vectors 

+ CAPE routine 
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COMPUTE DIMENSIONS OF ARRAYS 

PCP4: READ & WRITE LABEL 
READ 81 WRITE PROPERTIES 

GEN: (GENERAL GEOMETRY) 
READ: VOLUMES 

CONDUCTION SHAPE FACTORS 
CONVECTION COUPLINGS 
ADIABATIC WALL T 1 

0 --. I 
I I 

SLABP: (SLAB & COOLED PANEL 
GEOMETRIES) 

READ &WRITE AX’s, AY’sTAU. Sl, ETC. 
COMPUTE CONDUCTION SHAPE FACTORS 
COMPUTE VOLUMES 
COMPUTE CONVECTION COUPLINGS 

FOR COOLED SURFACES 

X24C: (X24C STRUCTURAL ARRANGEMENT) 
READ&WRITE AX’s, AY’s,Sl, S2, ETC. 
COMPUTE CONDUCTION SHAPE FACTORS 
COMPUTE VOLUMES 
COMPUTE CONVECTION COUPLINGS FOR 

COOLED SURFACES 

1 

LEAD4: (LEADING EDGE GEOMETRY) 
READ 81 WRITE MCAP,THETA, AX’s, AY’s. ETC. 
COMPUTE CONDUCTION SHAPE FACTORS 
COMPUTE VOLUMES 
COMPUTE CONVECTION COUPLINGS FOR I 

COOLED SURFACES 
I 

FIG. D-2 ORGANIZATION OF CAVE IN TERMS OF THE MORE IMPORTANT SUBROUTINE CALLS 
(SHEET 1 0F 2) -- 
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READ INITIAL T DISTRIBUTION r READ TRAJECTORY INPUTS 
READ TIME INTERVALS 
READ HEATING MODIFIERS 

+- 
FIRST TIME STEP? 

LEADING EDGE GEOMETRY 
WITH h COMPUTED BY 
CAVE? / 

I FIND TEMPERATURES 
AT END OF THIS 
TIME INTERVAL t- 

6 B 

. 

PROP: COMPUTE THERMAL CAPACITANCE 
AND CONDUCTION COUPLINGS 

PRPOUT: WRITE NODE NUMBERS, THERMAL 
CAPACITANCES, CONDUCTION COUPLINGS 

FLATH: COMPUTE CONVECTIVE 
COEFFICIENT AND ADIABATIC WALL 
TEMPERATURE FOR FLAT PLATE SURFACE I 

a 

a 

)ESDAl : 
1 FIND EIGENVALUEI 

AND EIGENVECTOR 

) COMPUTE STEADY- 
STATE TEMPERA- 
TURES 

1 COMPUTE TEMPER- 
ATURES END OF 
THIS TIME 
INTERVAL 

MATRIX EQUATION 1 
SCAPRZ: COMPUTES 
SCALAR VECTOR 
PRCJI-ILJCT I 

FIG. D-2 ORGANIZATION OF CAVE IN TERMS OF THE MORE IMPORTANT SUBROUTINE CALLS 
(SHEET 2 0~ 2) 
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READ INDEXES: 
JGEO - GEOMETRY SELECTION 
L - NO. OF ELEMENTS THROUGH MATERIAL 
M - NO. OF ELEMENTS ALONG SURFACE OF MATERIAL 
NE - NO. OF EIGENVALUES 

WRITE INDEXES 

COMPUTE DIMENSIONS 
OF ARRAYS 

I 

WRITE: “INCR 
DIMENSION OF S 
AND VALUE OF 
MWORDS” 

CALL OVLY 10 

CALL OVLY20 

0 RETURN 

FIG. D-3 SUBROUTINE SIZE2 FLOW CHART 



ENTER 

?l READ: 
LABEL 
EPSl,TBGl 
LABEL 
EPSl,TBGl 

MATERIAL 
PROPERTIES PROPERTIES 

CALL LEAD4 

v . 

PROPERTIES 

FIG. D4 SUBROUTINE PCP4 FLOW CHART 



0 ENTER 

READ: f-l AX ARRAY 
.2,Y ARRAY 
TAU. R 
Sl. sz.. HCOOL 

/ ; COMPYOF ELEMENTS 

ASSIGN MATERIAL NUMBER TO EACH NODE 

i COMPUTE CONO. SHAPE FACTORS IN X.OIRECTION 

+ 
COMPUTE CONO. SHAPE FACTORS IN Y DIRECTION 

1 COMPUTE X.OISTANCES OF CENTERS OF 

1X ARRAY 
_\Y ARRAY 

LOCATE NODES ON BOUNDARY 
OF COOLED PANEL MODIFY 
VOLUMES AND CONDUCTION 
SHAPE FACTORS 

SHAPE FACTORS EOUAL TO ZERO 

CONDUCTION SHAPE FACTORS 

FIG. D-B SUBROUTINE SLAB2 FLOW CHART 
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RPl. RP2. __ TCOOLZ 

COMPUTE PHI(I) AN0 XIII ALONG SURFACE II I c J 
rki i iMATERlAL NUMBER TO EACH NODE 1 

+ 
COMPUTE CONDUCTION SHAPE FACTORS FOR X DIR. 
CYLINDRICAL PORTION 

MODIFY EFFECTED VOLUMES 

HlNNl HCOOLl  
TAWINNI TcOOLl. ETC. 

I 

I 
COMPUTE CONDUCTION SHAPE FACTORS FOR X DIRECTION. 
WEDGE PORTION 

MODIFY EFFECTED VOLUMES 
AND CONDUCTION SHAPE FACTORS 
X DIRECTION 
SET: 

H(NNI HCOOLZ 
TAWINNI TCOOLZ. ETC. 

I 

COMPUTE CONDUCTION SHAPE FACTORS FOR Y DIRECTION. 
CYLINDRICAL PORTION 

MODIFY EFFECTED 
CONDUCTION SHAPE FACTORS 
Y DIRECTION 

0 RETURN 

FIG. D-S SUBROUTINE LEAD4 FLOW CHART 
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’ READ: 
AX ARRAY 
AY ARRAY 
Sl, s2. s3, s4 
Wl, w2. . - ., w7 
UC AR RAY 
MPARRAY 

4‘ 

I ASSIGN MATERIAL NUMBER TO NODES 
I 

11 COMPUTE CONDUCTIQN SHAPE FACTORS 

1 
I COMPUTE X - DISTANCES OF TOP SURFACE NODES I 

I LOCATE NODES ON BOUNDARY OF 
GEOMETRY. 
MODIFY VOLUMES AND CONDUCTION I 
SHAPE FACTORS 

I 
A 

LOCATE NODES NOT ACTUALLY 
PART OF STRUCTURE. 
SET VOLUMES AND CONDUiZTlON 

1 SHAPE FACTORS EQUAL TO ZERO 
I 

FIG. D-7 SUBROUTINE >524C FLQW CHART 
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MATERIAL NOS. 

4 
) READ: 

CONDUCTION 
SHAPE 
FACTOR, 
X-01 RECTION 

+ 
( READ: 

CONDUCTION 
SHAPE 

COUPLINGS 1 

VALUE READ EQUALS NEG. 
TABLE NO. FOR TIME 
DEPENDENT CONVECTIVE 
COUPLING 
SET: IHA (NN) = -DUM 

/READ: %, 
ADIABATIC 
WALL 
TEMPERATURE 

l 
VALUE READ EQUALS NEGATIVE 
TABLE NO. FOR TIME 
DEPENDENT ADIABATIC 
WALL TEMPERATURE 
SET: ITAW (NN) = -DUM 

CALL XTABSl 

IFG. D-8 SUBROUTINE GEN FLOW CHART 
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n ENTER x ARE 

0 RETURN 

FIG. 0-9 SUBROUTINE MATOUT FLOW CHART 



0 ENTER 

/ 
READ: 
KODE, LLl, LL2, TITLE 

I NO 

WRITE: 
“TABLE FOR HA “TABLE FOR HA 
AND TAW” 
TABLE NO. 
Ll, L2, TITLE 

/ / 
READ: READ: 
TABLE ARRAYS TABLE ARRAYS 

-0 RETURN 

b RETURN 

FIG. DlO SUBROUTINE XTABSI FLOW CHART 
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READ: 
INITIAL T 

GEOMETRY? 

1 iii&A.. , TURBL 1 1 ,&i;COOEX, HMODI 1 

. H&TAW \ / H&TAw\ nr.,m I.8 

READ: 
GAM. RGAS, PR 

I 
ESI 
/ 

/ 
READ: 
TIME INTERVALS 

FIG. D-II SUBROUTINE ov~Y20 FLOW CHART (SHEET I OF 4) 

145  



CALL PRPOUT 

CALL ATMOS 
CALL DINTK 

FIG. D-11 SUBROUTINE OVLYZO FLOW CHART (SHEET 2  OF 4) 
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GENERAL 

COMPUTE AVERAGE HA 
AND TAW AT EACH 
NODE FOR THIS 
TIME DEmlnn 

I \ TURil iENT ? 

f 
I 

COMPUTE AVERAGE H. HA AND TAW 
AT EACH SURFACE NODE 
FOR THIS TIME PERIOD 

FIG. D-l 1  SUBROUTINE OVLYSO FLOW CHART (SHEET 3  OF 41  
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CONSIDERED? 

MODIFY CONVECTIVE 
COUPLINGS TO 

* ACCOUNT FOR 
RADIATION 

I 

CALL DISPLA 

(MATRIX SOLN) 

FIG. D-11 SUBROUTINE OVLYZO FLOW CHART (SHEET 4 OF 4) 
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0 ENTER 

LOCATE POINTS 
X (I) AND X (I + 1) 
IN TABLE, WHICH 
FALL ON EITHER 
SIDE OF XP 

I 1 
INTERPOLATE 
TO FIND VP 

EXTRAPOLATE 
ABOVE TABLE 
TO FIND YP 

EXTRAPOLATE 
BELOW TABLE 
TO FIND YP 

c J 

*(SOURCE: NASA CR-2435) 

FIG. D-12 SUBROUTINE LINFIT FLOW CHART’ 



ENTER Q 

ADD POINT AT LOCATE SURFACE 
STAGNATION POINT 
(X = 0, t$ = 90”) AND 

ELEMENT WHOSE 
CENTER IS CLOSEST 

RELABEi X AND 41 TO STAGNATION 
ACCORDINGLY POINT 

I 
, 

I 

ABOVE AND’ 

1 
RELABEL TAW r-l AND HR TABLES 
TO BE CONSISTENT 
WITH OVLYPO 
NUMBERING SYSTEM 

0 RETURN 

FORM TABLE OF r-l X AND 4 VALUES 
ABOVE STAGNATION 
PO1 NT 

FORM TABLE OF 
X AND 4 VALUES 
BELOW STAGNATION 
POINT 

FIG. D-13 SUBROUTINE ATTACZ FLOW CHART 
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n ENTER 

PROPERTIES 
AFTER NORMAL 

YES J---l INTEGRATE P X U 
NUMERICALLY TO 
EVALUATE H (I)/HSp 

I 
I 

J 

A RETURN 

FIG. D-14 SUBROUTINE .LEESY, FLOW CHART 
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,.,.. ,. .., , -... ,.... .---.. ~. ..--. . - .._.- 

FIND: 
k AND pCp 
FOR MATERIAL 1 FOR MATERIAL 2 

BETWEEN 1 AND 2 
COMPUTE AVERAGE 
k AND pCp FOR MATERIAL ” 
lAND2 : 

L 

I I 
ESTABLISH LOCATION 
OF NODE, i.e., WHICH 
MATERIAL; COMPUTE 
k AND pCp 

I 

COMPUTE CONDUCTION COUPLINGS 
AND THERMAL CAPACITANCES 

FIG. D-15 SUBROUTINE PROP FLOW CHART 
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(WRITE NODE 

CAPACITANCE SET MATERIAL 

CALL DISPLA 

CALL DISPLA 

FIG. D-16 SUBROUTINE PRPOUT FLOW CHART 
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YES 
7 

FALL ON EITHER 

INTERPOLATE 
FIND RATIO 

COMPUTE VALUES 
FOR ALL DEPENDENT 
VARIABLES, FCT (J) 

I I 

6 RETURN 

0 RETURN 

FIG. D-17 SUBROUTINE XINTPI FLOW CHART 
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COMPUTE FLOW 
CONDITIONS 

8 =TAN-’ COMPUTE SHOCK 
ANGLE 

BEHIND SHOCK CALL ATMOS 

ENTER Q 

I TURBULENT 

6 RETURN 0 RETURN 

FIG. D-18 SUBROUTINE FLATH FLOW CHART 

I COMPUTE LAM INAR 
H AND TAW 

I 
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ENTER 0 
NO NO 

COMPUTE PRESSURE COMPUTE PRESSURE 

COMPUTE PRESSURE COMPUTE PRESSURE 
AND TEMPERATURE AND TEMPERATURE 

COMPUTE TEMPERATURE COMPUTE TEMPERATURE 

COMPUTE TEMPERATURE COMPUTE TEMPERATURE 

COMPUTE PRESSURE COMPUTE PRESSURE 
AND TEMPERATURE AND TEMPERATURE + + 

v 

COMPUTE DENSITY 

0 RETURN 

FIG. D-19 SUBROUTINE ATMOS FLOW CHART 
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n ENTER 

c < MACH>3 > 

<REYNOLDS > 2 x lo5 m ~%!!.S 

SET LAM I NAR 
FLOW INDICATOR 

^-- --. 
TURBULENT 

NUMBER, RET 
FLOW 
INDICATOR 

NUMBER, RET 

FIG. D-20 SUBROUTINE TRANS FLOW CHART 



(SET UP MATRIX 
IN COMPACT 

(INITIAL GUESS 

+ 
1 SET UP 

TEMPERATURE 
ARRAY. INITIAL 
TEMPERATURES THIS 
TIME INTERVAL 
EQUAL FINAL 

CALL RVORDR 

I I 
COMPUTE 
STEADY 
STATE 4 

NO SET 

SOLUTION 
TSS = TAW 

I I 

0 RETURN 

FIG. D-21 SUBROUTINE DESDAl FLOW CHART 
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CALL BFACS 

CHOLEWSKI 
DECOMPOSITION 
INTO UPPER + LOWER 
TRIANGULAR MATRIX 

, 

I 

1 
INlTlALlZE 
CONSTANTS 

1 
CALCULATE 
B=vTAv 
USING SPECIAL 4 

1 
BANDED STRUCTURE OF A ORTHONORMALIZE L 1 

1 
EIGENVECTORS 

+ 
SET EIGENVALUES (D = DIAG [B] ) ORDER THEM WITH 
TO RAYLEIGH QUOTIENTS RESPECT TO 

1 
EIGENVALUES 

CALCULATE t 
EIGENVALUE ERRORS 
& DETERMINE MAX ERROR ORDER 

EIGENVALUES 

1 
V = A-’ V 
(FROM BSOLS) 1 1 

t 
CORRECT 

I EIGENVALUES 

t 
SET B TO 
JENNINGS 
ITERATION 
MATRIX 

“(SOURCE: NASA CR-2435) 

FIG. D-22 SUBROUTINE IJEN FLOW CHART* 
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0 ENTER 

INDEX.1 FROM 1 TOM 

INDEX J FROM I TOM INDEX J FROM I TOM 

a = VLJ YLI-1 a = VLJ YLI-1 

1 1 

INDEX I I FROM l TO N INDEX I I FROM I TON 

1 1 

SET VLJ = VLJ - a %-I-, SET VLJ = VLJ - a %-I-, 

1 1 

a= l/J= a= l/J= 
I I 

I 

I 
YL~ = a& 

I 

‘(SOURCE: NASA CR-24351 

FIG. D-23 SUBROUTINE ORNML FLOW CHART* 

160 



Q ENTER 

4 
SET=OFIRSTL 
ELEMENTS OF SUPERDIAGONAL 
AS REQUIRED BY BFACS 

I SET UP Lth SUPERDIAGONAL 
ELEMENT IN A(IJ, 3) 

I 

r 4 I 
SET UP 1st SUPERDIAGONAL 
ELEMENT IN A(IJ, 2) 

I 

I SET UP MAIN DIAGONAL 
IN A(IJ, 1) I 

UNUSED SPACE SET 
EQUAL TO ZERO 

1 YES 

I SET UP L/2 CROSS-ELEMENTS 
CONTAINING PATHS FOR 
LEADING EDGE (LOOP 30) I 

0 RETURN 

FIG. D-24 SUBROUTINE HETRAl FLdW CHART 
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QUANTITY 

EIGENVALUES 
EIGENVECTORS 
RANK VECTOR 
PERMUTATION VECTOR 
EIGENVECTOR DIMENSION 
NUMBER OF EIGENVECTORS 
DIMENSION OF ARRAY 

USED TO STORE EIGENVECTORS 

SYMBOL 

R 
V 
K 
L 
N 

MM 

MID 

INPUT/OUTPUT 

IN + OUT 
IN + OUT 

OUT 
OUT 

IN 
IN 

CALCULATE PERMUTATION 
VECTOR TO ORDER 
EIGENVECTORS (CALL AORDER) 

SET RANK 
(LOOP 1) 

+ 
I (LOOP 3) 

IN 

DIMENSION 

R(MM) 
V(MID, MM) 

K(MM) 
LWM) 

0 RETURN 

*(SOURCE: NASA CR-24351 

FIG. D-25 SUBROUTINE RVORDR FLOW CHART* 



SCAPRZ CALCULATES THE INNER 
PRODUCT OF TWO VECTORS STORED 
AS EQUALLY SPACED WORDS IN FORTRAN ARRAYS 

SUM=0 

SCAPRZ = SCAPRO 

I 

r’I1 RETURN 

‘(SOURCE: NASA CR-2435) 

FIG. D-26 SUBROUTINE SCAPRZ FLOW CHART* 

163 



Sheet D-l. Subroutine NURED Description (Sheet 1 of 4) 

To read a set of tables for functions 2 variables 

Program Description 

The input data must be structured as specified below. The calling program must contain the statement, 
COMMON STG(L), where L >(Ll(l)+l) (L2(1)+1) + . . . + (Ll(M)+l) (L2(M)+l). Program restrictions - 
are noted below: 

Input Parameters 

FORTRAN Name Description 

NUMTBL 

MANDAN 

Ll 

L2 

NUMPTS 

Output Parameters 

NG 

= 1 for first call to NURED 
= K for replacement of tables, where K is the table number of the first table 

being replaced 

= 0 for initial read in 
= 1 for table replacement 

Array of dimension M, where M  is the maximum number of tables in storage 
at any one time 

Ll (K) = number of xi in table K 

Array of dimension M  
L2(K) = number of yi in table K 

Array of dimension M+l 
NUMPTS(K) = the number of table entries preceding table K 

To be set to 0 in the calling program 
NG = 0 if tables have been read correctly 
NG = 1 if there has been a read in error 

Calling Sequence 

CALL NURED (NUMTBL, MANDAN, NG, Ll, L2, NUMPTS) 

Input Format 

For each table the functions values, F, (X,Y) are entered for consecutive groups of nine values of X, over all 
values of Y 

(con timed) 
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Sheet D-l. Subroutine NURED Description (Sheet 2 of 4) 

Input Format (Cont’d) 

The input data must be structured as indicated. First, there is a header card with the appropriate entries in 
the indicated columns 

l-2, 3-4 17 ------------------7O 71:72 
Ll L2 COMMENTS seS# 

Next, for the first 9 values of X the input data takes the form 

l-7 B-14 15-21 22-28 . . . 57-63 

Xl X2 X3 . . . XB 

Yl F(1.1) F(2,l) F(3.1) . . . F(B,l) 

. . . 
. . . 

YL2 F(l,L2) F(2,L2) F(3,L2) . . . F(8,L2) 

For the second group of 9 values of X, the form of the input is 

X10 X11 Xl2 . . . Xl7 

Yl F(10.1) F(11.1) F(12,l) . . . F(17.1) 

. . . 
-. . . . 

YL2 F(lO,L2) F(1 l,L2) F(12,L2) . . . F(17,L2) 

64-70 

X9 

W,l) 

F(9,L2) 

‘18 

F(18.1) 

F(18,L2) 

71-72 
Ses# 

Seq# 

Ses# 

Seq# 

Ses# 

Seq# 

Additional values of X are handled similarly. When all X vahres have been accounted for, the next table 
of values for the next function is set up in the same way. When all data tables which are to be read in at 
any one time have been set up as indicated, a blank card is placed at the end of the data deck. 

The parameters used above are defined as follows: 

Ll = Number of X values in table 
L2 = Number of Y values in table 

Ses# = Sequence number of a card within a table, beginning with 0 for the first card 
F(I,JJ = Function value for Xl, YJ 

Xl = Argument 1 values in table 

Yl = Argument 2 values in table 

The figure illustrates the card format for the tables (see Sheet 4 of Sheet D-l). 

(12) 
(12) 
(12) 
(E7.0) 
(E7.0) 

(E7.0) 

(continued) 
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Sheet D-l. Subroutine NURED Description (Sheet 3 of 4) 

Program Restrictions 

The tabular values of the variables X and Y must a&ear in algebraically increasing order. The variables 
X and Y, and the function values must: 

l Be single precision numbers less than 99999E9 
l Have a maximum of 7 significant digits if positive 
l Have a maximum of 6 significant digits if negative 

A maximum of 99 cards is allowed for each table 
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CARD FORMAT FOR TABLES 

CONTINUATION CARDS FOR REMAINING Y VALUES 

Y2 F(10.21 F(11.21 F(12.21 F(13.2) F(14,2) F(l5.2) F(16.2) F(17.21 F(18.2) I 
I 
Yl F(10. 1) Fill, 1) F(12, 1) F(13, 1) F(14, 1) F(15, 1) F(16, 1) F(17, 1) F(l8, 1) I \ 

I 
x10 x11 x12 x13 x14 x15 Xl6 x17 Xl8 

CONTINUATION CARDS FOR REMAINING Y VALUES 

Y2 Fil, 2) FL’. 2) Fi3.2) FI4,2) F(5.2) F(6.2) F17, 2) F (8.2) F(9.2) 03 

I 
Yl F(1, 1) F(2, 11 F(3, 1) F(4. 1) F(5. 1) F(6,l) F(7. 1) F(8. 1) F(9;1) 02 \ 

ICOL 7 14 21 28 35 42 49 56 63 70 72 

Xl x2 x3 x4 x5 X6 X7 X8 x9 01 \ 

I2 4 70 72 

Ll ( L21 COMMENTS I4 \ 

SHEET D-l SUBROUTINE NURED DESCRIPTION (SHEET 4 of 4) 



Sheet D-2. Subroutine DlNTk Description (Sheet 1 of 3) 

Purpos0 

Table lookup and linear interpolation for several functions of two variables. 

Analytic Description 

In the derivation of STINT (6.1.1.5) equations, we find the linear interpolation form 

f(X,Y) = 
f(x,l) (Y - Yo) + f(x.0) (Y, -VI which, by algebraic manipulation becomes 

y1 -yo 

(iI f(X,Y) = 
(Y, - Y) (Yo - Y) 

y7 -yo 

Analytic Restrictions 

The function f should be linear 

Program Description 

f, (KY). f2oLY). . . . . f, (x,Y) are found for xi 5 x <_ Xi+, and vi 5 y <_ yi+, , using equation (i) 

Program Restrictions 

Extrapolation will not be performed. The calling program must contain the statement COMMON STG(L), 
where 

m  

L> 
c 

(Ll(l) + 1) (L2(l) +l) 

i=l 

Input Parameters 

FORTRAN Name Description 

Lt. L2, NUMPTS 
KODE 
NlHlB4 
N2HIB4 
ARGl 
ARG2 
NUMTBL 
L3 

As described in NURED 
Dummy array of length m. Initialize to zero in the calling program 
Dummy array of length m  
Dummy array of length m  
Value of x argument 
Value of y argument 
Number of the first table in which interpolation will take place 
Number of functions to be interpolated 

(con tinuedl 
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Sheet D-2. Subroutine DIPJTK De+iption (Sheet 2 of 3) : 

Output Parameters 

FCT Arrayof length L3, consisting of the elements FCTflj = Fj (x,Y), . . . . 

FCT(L3) = f,(x,y). (j=NUMTBL, n=j+W-1) 

NG To be initialized to zero before calling DINTK 
NG = 0 indicates a normal return 
NG = 2 indicates a machine error or an error in the calling sequence 
NG = 3 indicates that x or y is outside of the range of the tables 

Library Supplied Routines 

User must calf NURED to read in the tables of x, y, ft (x,Y), . . . . fm(x.y) Prior to calling DlNTK 

Calling Sequence 

CALL DINTK (Ll, L2, NUMPTS, KODE, NlHIB4, N2HIB4, ARGl, ARG2, NUMTBL, L3, FCT, NG) 

List of Variables 

FGRTRAN Name Description 

Ll 
L2 
NUMPTS 
KODE 
NlHlB4 
N2HIB4 
ARGl 
ARGP 
NUMTBL 
L3 
FCT 
NG 
STG 
X 
Y 
ANS 
FACTOR 
F 
NT 
NCHECKl 
NCHECKP 
INC 1 
K 
NLOl 
NL02 
NBLOl 
NBLOS 

Table of values of input 
Temporary storage for ARG 1 
Temporary storage for ARG2 
Working storage 
Working storage 
Working storage 

Indices 

(continued) 
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sheet D-2. Subroutine DINTK Description (Cont’d) (Sheet 3 of 3) 

List of VariaMer Kont’d 

FORTRAN Name Description 

NH11 ‘i 
NH12 
JINDEX 
KINDEX 
I 
J k 
M 
LDUMYl 
LDUMY2 
LENGTH 
LIMLOW 
LIMUPR / 
KTESTl 
KTEST2 
KTEST3 
KTEST4 
L 
M 
I 
J 1 
LA 
LB 
NDUMYl 
NDUMYP 

Indices 

DO loop indices 

Working storage 



Sheet D-3. Subroutine POLRT Description 

Computes the real and complex roots of a real polynominal 

Usage 

Call POLRT(XCOF,COF,M,ROOTR,ROOTl,lER) 

Description of Parameters 

XCOF = Vector of M+l coefficients of the polynominal ordered from smallest to largest power 
COF = Working vector of length M+l 
M  = Order of polynominal 
ROOTR = Resultant vector of length M  containing real roots of the polynominal 
ROOTI = Resultant vector of length M containing the corresponding imaginary roots of the polynominal 
IER = Error code where: 

IER=O No error 
IER=l M  less than one 
IER=2 M greater than 36 
IER=3 Unable to determine root with 500 interations on 5 starting values 
IER=4 High order coefficient is zero 

Remarks 

Limited to 36th order polynominal or less 
Floating point overflow may occur for high order polynominals but will not affect the accuracy of the results 

Subroutines and FunctionSubprograms Required 

None 

Method 

Newton-Raphson iterative technique. The final iterations on each root are performed using the original 
polynominal rather than the reduced polynominal to avoid accumulated errors in the reduced polynominal 
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Sheet D-4. Subroutine EIGVC Description (From NASA CR-2435) 

EIGVC computes guesses of the eigenvalues, eigenvectors and associated permutation index that are necessary to 
start the iteration in the Jennings method to calculate eigenvalues and eigenvectors. The formulae used for these 
guesses are: 

ith eigenvalue R 2 -i 

ith eigenvector A r e 

Y T FOR TOP HALF 
FOR BOTTOM 

Y HALF 
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Sheet D-5. Subroutine BFACS Description (Sheet 1 of 2) (From NASA (X-2435) 

Given a special, L-banded, positive or negative definite symmetric N-th order matrix, S, decompose it into the 
product: 

S  = UT D-‘U 

where U is an L-banded nonsingular upper triangular matrix with unit diagonal elements, and D is a nonsingular 
diagonal matrix. 

The S  matrix is inputted as elements of three one-dimensional arrays, A, B, E. The N elements of A  are ‘the main 
diagonal elements of S, the leading (N-L) elements of E  are the L-th super- (and sub-) diagonal elements of S. The 
N-1 elements of B  are super- (and sub-) diagonal elements of S. *The trailing L/2 elements of E  (optionally), define 
main cross diagonal elements of the upper L-th order submatrix of S. In general, later definitions override earlier one, 
e.g. if L = 1, B  (not E) defines the super diagonal elements of S. In the case for which BFACS is intended, most elements 
inside the band are zero. The cross diasonal is installed onlv if the argument, a, is not zero.’ The S  matrix is tooolo- 
gically equivalent to conduction paths in a slab (leading edge if a # Or; consider the N = 12, L = 4 example: ’ 

‘1 2 3 4 5 6 7 8 9’ 

%he%d!%~o~ 
problem generally 
but must be explicitly 
made 0 for BFACS 

Note: If nose paths 
are included e, ,, e,2 
are used (a # 0). 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 
l- 

I I 
a1 bl 0 1 ej21 e, 0 0 0 0 

bl a2 relt:OVIO e2 0 0 0 

b3 0 I 0 e3 0 0 

0 

e2 

0 

0 

0 

0 

0 

0 

a41@ 0 0 e4 0 
- --- 
:-@:a5 b5 O-07 e5 

0 0 1 b5 a6 b,tj 0 lo 

I I 

e3 ’ 1 ’ b6 a7 b7 1 O 

0 e4 

0 0 

0 0 0 @ ” Oh9 

I 
0 0 0 0 e7 0 0 

I 

0 0 0 0 0 eg 1 0 
I 

10 

0 

0 

0 

0 

0 

e6 

0 

0 

11 

0 

0 

0 

0 

0 

0 

e7 

0 
- - -- 
bg 0 0 

a10 b10 O 

b10 a11 bll 

0. b!l a12 
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Sheet D-5. Subroutine BFACS Description (Sheet 2 of 2) (From NASA CR-24351 

To take advantage of both symmetry and the band form U is stored in a rectangular array of size MID by L, 
where MID 2 N,; the bottom row is used as scratch storage, r,, ‘2, . . , rL, and the unused bottom triangle is 
zeroed out (for convenience in printing only). U appears as: 

1 

2 

3 

4 

5 

6 

7 

a 

9 

10 

11 

12 

STORED ARRAY NON ZERO ELEMENTS OF U MATRIX 

1 2 3 4 2 3 4 5 6 7 a 9 10 I1 12 

“11 “12 “13 “14 

1 “21 “22 “23 “24 

1 “31 “32 “33 u34 

1 “41 “42 “43 “44 

1 “51 “52 ‘53 ‘54 

1 “61 “62 “63 “64 

1 ‘71 ‘72 ‘73 “74 

1 “ai “82 ua3 ua4 

1 “91 “92 “93 

1 “10,l “102 

1 “11.1 

1 

011 “12 “13 “1 

u21 “22 ‘23 ‘2 

u31 ‘32 ‘33 ‘3 

“41 “42 ‘43 “4 

“51 “52 “53 “5 

“61 ‘62 ‘63 “6 

uJ1 uJ2 ‘73 ‘7 

ual ua2 “83 % 

“91 “92 “93 O 

“10,1”1026 O 

“11.1 O O O 

‘1 ‘2 ‘3 ‘4 

1 

2 

3 

4 

5 

6 

7 

a 

9 

10 

11 

12 

The N elements of 0-l are stored in an N-array. For the usual case of S being either positive-or negative-definite, 
these elements are all positive or all negative, respectively. However the routine will “work” provided only that the 
leading N principle minors are non-zero. For details see the following article which guarantees high accuracy only for 
the definite cases of usual interest: “Symmetric Decomposition of Positive Definite Band Matrices”, R.S. Martin, 
J.H. Wilkinson, C. l/4, LINEAR ALGEBRA - HANDBOOK FOR AUTOMATIC COMPUTATION, VOLUME II, 
Springer-Verlag, 1971. 
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Sheet D-6. Subroutine BSOLS Description (From NASA CR-24351 ,’ 

Given the product form decomposition of an L-banded symmetric matrix, S = UTD*’ U, as calcul,ated by the 
BFACS subroutine, BSOLS solves a system of N linear equations with M right hand sides: 
S (Y, Y2-YM) = (Y, Ys...YM} 

The routine s; mply carries out the standard forward substitution phase: 

z=u-Ty 

followed by the standard backward substitution phase: 

x = U*’ D z 

The only unusual aspect is the rather unorthodox storage scheme which is described in the documen.tation for 
subroutine BFACS. This scheme is necessary to exploit the banded symmetric form of S in the most efficient way 
in terms of computer memory. For details see: R.S. Martin, J.H. Wilkinson, “Symmetric Decomposition of Positive 
Definite Bank Matrices”, in: Linear Algebra-Handbook for Automatic Computation, Volume I I, C: l/4, Springer- 
Verlug, 1971 
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Sheet D-7. Subroutine AORDER Description (From NASA CR-24351 

PURPOSE: ORDER A SET OF REAL NUMBERS 

CALLING SEQUENCE: CALL AORDER (A, N, IPERM) 

INPUT 

NAME DIMENSION 

A A(N) 
N 

OUTPUT IPERM IPERM(N1 

AORDER CALLS NO OTHER SUBROUTINES 

DESCRIPTION 

ELEMENTS TO BE ORDERED 
NUMBER OF ELEMENTS = I N I 
N > 0 INCREASING ORDER 
N < 0 DECREASING ORDER 

ORDER VECTOR - 
SPECIFIES THE SEQUENCE 
OF ELEMENT INDEX NUMBERS 
WHICH WILL PRESENT 
A AS AN ORDERED SET, 
i.e. 

DO 100 I = 1. N 
100~WRITE (6.1) A (IPERM(I)) 

1 FORMAT (F 10.5) 

WILL LIST A AS AN ORDERED ARRAY 



Sheet D-8. Subroutine DISPLA Descriptidn (From NASA CR-24351 

TITLE: DISPLA - Prints scalars, vectors, rectangular matrices, packed symmetric matrices, and Hessenberg 
matrices. 

AUTHOR: M. J. Rossi 

DATE: September 1973 

APPLICABLE COMPUTERS: IBM 360/370; CDC 6000 SERIES 

SOURCE LANGUAGE: FORTRAN IV 

PURPOSE: To simplify printing of mathematical types of data structures in an easily read format which allows 
titles and index labels. 

METHOD: FORTRAN looping and write statements which indexes and addresses arrays according to their type. 

USAGE: Call DISPLA (X, NFILE,TITLE, KAR, KIND, NROWS, NCOLS, MID). 

X - Input - Array of one or more values to be printed 
NFILE - Input - FORTRAN unit for printing. 
TITLE - Input - Vector of KAR characters used as title. 
KAR - Input - Number of characters in above string. 
KIND - Input - Type of mathematical data structure: 

= 0 scalar (or vector printed on one line with no index) 
= 1 vector of \NROWSl elements, indexed 
= 2 Rectangular INROWSI by NCOLS matrix - Dimension (MID, ‘1 
= 3 Packed Symmetric matrix of order INROWS l 

124 
-235 [ .I - lower triangular partial rows if NROWS positive 

4 5 6 

123 
-245 

[ I 
- lower triangular partial columns if NROWS negative 

3 5 6 

= 4 - Transposed Hessenberg matrix of order NROWS - Dimension (MID, M!D) 

NROWS - Input -Number of elements if KIND = 0 or 1 
- Number of rows if KIND = 2 
- Matrix order if KIND = 3 or 4 

NCOLS -Input - Number of columns if KIND = 2 
- Ignored-otherwise 

MID -Input - Matrix Dimension if KIND = 2 or 4 
- Ignored otherwise 

SUBROUTINE REQUIRED: SWITCH 
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Skeet D+. Subroutine PART Descriptidn (From NASA CR-2435) 

TITLE: PART - Prints standard 120 character labels at the top of the next page. 

AUTHOR: M. J. Rossi 

DATE: September 1973 

APPLICABLE COMPUTERS: IBM 360/370; CDC 6000SERlES 

SOURCE LANGUAGE: FORTRAN IV with 2 Assembler Language Subordinate Subroutines. 

PURPOSE: To make it convenient to produce standard printed labels with “part” numbers, date, and running CPU 
time on the top of the next page. Also, prints short line on next line with just CPU time for intermediate 
timing. ? 

METHOD: On the first printing entry for a given computer run the Date Subroutine is invoked and an 8-character 
. field of an internal word is stored with the date in the form: “KK/LL/MM”, where KK is the index 

number for the month,.LL is the day of the month, and MM is the last 2 digits of the year, e.g., 
March 15, 1973 3/l 5/73. Also, at this time, the SECOND subroutine is invoked to both 
establish the zero time point and to set the units to hundreds of a second. Then the first printed page 

. heading is given with a zero time and a PART number 1 reported. Subsequent printing calls will give 
the time as: NNJ I .JJ where NN is the number of minutes elapsed, I I is the number of seconds, and 
JJ is the number of hundredths of seconds. The PART number is incremented by one for each 
printing call. There are two fields of alphameric information for the full printing mode which are under 
control of the user: (1) The first is a 40 character LABEL field which is set upon calling PART in the 
non-printing mode, 12) The second is a 48 character field which is supplied on a full printing call. 
There is also a partial printing mode which simply results in the appearance on the next line of an 8 
character field of user supplied TITLE along with running CPU time. 

USAGE: CalCPART (‘XX.. .X’. I 1 
; ‘X:X, . ..X’ - Input = Alphameric string of’either 8,40, or 48 characters depending on the value of L. 

k ~&&t.- FORTRAN unit for printing, if positive 
_ - If zero, simply sets 40 character LABEL field and returns 

- If negative, prints 8 character TITLE - ‘XX. . .X’ - and CPU time on next line and 
increments PART number. 

- If positive, prints DATE, TIME, 40 character LABEL, 48 character TITLE, Part Number 
and spacers with standard notation. 

SUBRO~~E$FlEQUlRED: DATE, SECOND 



Sheet D-10 Subroutine Switch Description (From NASA CR-2435) 

PROGRAM TITLE: Utility routine for re-arrangement of certain triangular arrays 
SUBROUTINE NAME: SWITCH INDEX: 12.6.0.1 
ANALYST: F. Nolan 
PROGRAMMER: F. Nolan DATE: June 15,1967 
DOCUMENTATION AUTHOR: F. Nolan DATE: June 20,1973 
SOURCE LANGUAGE: FORTRAN IV 
APPLICABLE COMPUTERS? IBM Systems 360,370; CDC 6000 series 
REVISION: DATE: 

PURPOSE: To provide a convenient conversion between two common arrangements for the storage of triangular 
(and symmetric) matrices. 

ANALYTIC DESCRIPTION: The routine makes systematic use of transpositions, i.e., interchanges of two array 
elements. It is a well known result in permutation theory that every permutation can be represented 
as a product of transpositions. 

PROGRAM DESCRIPTION: There is no loss of generality in assuming that the input matrix is of lower triangular 
form. It is natural to store such matrices by row or by column. Both arrangements are illustrated for 
a matrix of order 5. The understanding is that the (4.3) element, for example, is assigned position 9 
using row storage, and position 11 using column storage. 

Row Storage Column Storage 
1 1 
2 6 
4 i i 7 10 
7 8 : 10 4 8 11 13 

11 12 13 14 15 5 9 12 14 15 
Given a lower triangular or symmetric matrix, stored in either fashion, SWiTCH can re-arrange it to the 
other form. The rearrangement is carried out “in place” in the sense that no auxiliary array is required. 
For an input matrix of order m, the transformation is performed in approximately %rns transpositions. 
There are no rounding errors. 

PROGRAM RESTRICTIONS: The matrix must be of order at least 3. 

INPUT PARAMETERS: 
FORTRAN Name Description 

A Singly-dimensioned real array containing the matrix to be re-arranged. 

M  Order of matrix A. If M  is given positive, conversion is from row to column 
storage. If M  is given negative, conversion is from column to row storage. 

OUTPUT PARAMETERS: 

A Matrix in re-arranged order. 

CALLING SEQUENCE: 

CALL SWITCH (A, M) 
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APPENDIX E 

DISCUSSION OF NONLINEAHITIES AND TIME DEPENDENCY OF h AND TAW* 

The heat conduction problem that CAVE solves generally contains nonlineari- 
ties as a consequence of the material properties being temperature dependent and the 
radiation heat transfer taking place at the surface of the structure. The problem 
usually has the further complication of time varying boundary conditions by virtue of 
h and TAW being time dependent. This appendix considers two questions: (1) how 
should the nonlinearities be handled; and (2) how should the time dependence of h and 

TAW be handled. 

Considering the second question first, it is noted that the time dependence does 
not destroy the linearity of the problem. However, in this case an eigenvalue solution 
cannot be obtained by treating h(t) directly in the system of ordinary differential 
-equations. This is seen by considering the restrictive case in.which 

h(y,t) = ho(y) +hl 0) 

If the semidiscrete problem has the following form (Refer to eq. A-la) 

3 = A(t) T+h(t); T(O) = T 
-0 

where for simplicity M is taken to be the identity matrix, then the diagonal elements 
of A depend on t and the above assumption on the form of h (y ,t ) leads to 

A(t) = A0 + aL(t)J 

where al(t) is a scalar time function and J is a diagonal matrix with ones and zeros. 
In this case 

A$) AU& f A($) A$) 

which therefore precludes an efgenvalue/eigenfunction solution. 

*This appendix courtesy of Michael J. Rossi. 
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Therefore, since the eigenvalue solution does not extst for even this restrictive 
form on h(y, t), the recommendation then is to subdivide the time interval and take h 
and TAw to be piecewise constant within each subinterval. Returning to the first of 
the two questions posed, we see another motive for subdividing the time interval. If 
the subdivision for h and TAW produces short enough intervals one may account for 
the temperature-dependent properties and radiation terms by taking them to be piece- 
wise constant depending on the temperature at the beginning of each subinterval. One 
must caution, however, against taking time subintervals which are so short as to 
require too large a number of eigenvalues and eigenfunctions in order tc ensure an 
accurate solution of the resulting subproblems. The best approach might be to first 
predict the temperature history on a subinterval based on a time-invariant linear 
model, and then-to correct the solution by considering a forcing term to account for 
the total neglected effects of radiation, temperature dependent thermal properties, 
and time-dependent convection. 
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APPENDIX F. 

DERIVATION OF SOLUTION ‘IO THE EQUATION Mk = BT +F 

This appendix presents a step-by-step solution to the vector equation 

@=B_T+_F Eq. (F-l) 

which represents the temperature response within a body that has been discretized 
into a number of uniform temperature systems or nodes that are coupled and changing 
in temperature. The elements of the diagonal matrix M represent the mass-specific 
heat product of each system or node; the elements of the matrix B represent the 
convective-conductive couplings between nodes ; and the elements of the vector _F 
represent the product of the convective couplings with the corresponding fluid 
adiabatic wall temperature (or recovery temperature). And, of course, the elements 
of the vector T represent the instantaneous temperatures of the nodes; the 
elements of the vector 2 the time rate of change of the temperatures. Specifically, 
for the four node system shown in Figure F-l: 

0 

M= 
0 

(PVC ) 0 
p2 

0 (PVCp& 

( PVCp$ 
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FLUID Q 

TAW H 
- 

- 

52 K23 K34 
I I I 

I I I 

4 

c- ADIABATIC 

UNIT DEPTH 

FIG. F-l FOUR NODE SYSTEM 
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B= 

-(H+K& K12 0 0’ 

Kl2 -(K12+K23) K23 0 

0 K23 ‘(K23+K3*) K34 

0 0 K34 -K34 

T1 

T2 
x= 

i! T3 

T4 

and 

where, 
P 
V 

cP 
H 
h 
A 
K.. 4 
k 
AXij 

TAW 

= mass density 
= volume associated with node 
= specific heat 

= convective coupling, hA 
= convective heat transfer coefficient 
= heat transfer area 
= conductive coupling between nodes i and j , kA/AXij 

= thermal conductivity 
= conduction distance between nodes i and j 

= adiabatic wall temperature of fluid 
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To obtain the solution to theEq. (F-l), we premultiply both sides of (F-l) by 
the inverse of M and obtain 

i = M-+Bz + M-lF Eq. (F-2) 

If we define a symmetric matrix A by 

Eq. (F-3) 

we obtain after premultiplication of Eq. (F-3) by M -l/2 and postmultiplication by M l/2 

~4~ ml12 = M-$ Eq. (F-4) 

After substituting Eq. (F-4) into Eq. (F-2) and defining a matrix N for convenience in 
writing by 

N = M’1/2AM1/2 Eq. (F-5) 

we get 

. 
_T=NT+M-lF Eq. (F-6) 

We now assume that the solution toEq. (F-l) can be expressed as 

,T= Q w + TcfJ Eq. (F-7) 

where 8 is a vector having time-dependent components and &, is a vector that is 
independent of time. (Physically, T, represents the steady-state temperatures that 
the system will achieve. ) 

Substitution ofEq. (F-7) into Eq. (F-6) yields: 

Eq. (F-8) 
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and we shall let s,, be such that it satisfies 

NT* f M-l_F = 0 

Therefore, we have 

T -00 
= -M-1/2A-1~-1/2 

Then with 2, satisfying Eq. (F-9) 9 Eq. (F-8) becomes 

which has the solution* 

b=etNe 
-0 

Returning to Eq. (F-7)) we have after substituting Eq. (F-11) 

2 =etNQo +T -a0 

To evaluate e,we use the initial condition 

thus 

0 -o=ri-T -a 

which gives upon substitution into eq. (F-12) 

Eq. (F-9) 

Eq. (F-10) 

Eq. (F-11) 

Eq. (F-12) 

Eq. (F-13) 

*See for example Hochstadt , flDifferential Equations, ‘I Holt, R.fneha& a& Wmston , 
pp 55-58. 
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Eq. (F-13) is the solution to Eq. (F-l) along with the initial condition; 
however, from a computational standpoint Eq. (F-13) is not convenient because 
evaluation of the exponential term requires summing an infinite power series in 
the matrix N. 

We now develop a more convenient form for Eq. (F-13). Recalling the definition 
of N from Eq. (F-5) 

we see that 

N2 = (&2AM1/2) (M-1/2AM1/2) = M-1/2A2M1/2 

and, in general, that 

Nj = M-1/2Aj&2 

Therefore, the Taylor series 

etN = - O” tld c j=. j! . 
can be written 

etN = &/2 O” tjAj M1/2 
c j! 
j=O 

which leads to the result 

Eq. (F-14) 

Because the matrix A is a symmetric matrix we can find a matrix V such that 

V-lAV=A Eq. (F-15) 



where A is a diagonal matrix formed with the eigenvalues of A.* The matrix V can be 
selected to be orthogonal, that is, it is a matrix whose columns comprise the elements 
of n linearly independent eigenvectors of matrix A that are mutually orthogonal and of 
unit length. 

From Eq. (F-15) we have 

A=VAV-’ 

which when substituted into Eq. (F-14) yields 

etN 
= &p/2 v etA v-1 &/2 Eq. (F-16) 

where we have made use of the identity 

The representation for e tN given in Eq. (F-16) is convenient since A is a 
diagonal matrix and therefore the exponential term is easily and explicitly evaluated 
as follows : 

etA = 

,tA2 

. 

. 

. 

0 ethll 

where the X’s are the eigenvalues of matrix A. 

*cf. Hildebrand , “Methods of Applied Mathematics, ‘I Prentice-hall, pp. 3 7-39. 
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Substituting Eq. (F-16) into Eq. (F-13) we obtain the final form for the 
solution 40 equation (F-l) 

Eq. (F-17) 

where we have made use of the property that for normalized modal matrices, the trans- 
pose of the matrix equals the inverse of the matrix, i.e. , 

Equation (F-17) is Eq. (9) of NASA CR-2435 by Maise and Rossi; it forms the 
basis of the HAN method. 

It should be noted that for a system with n nodes or elements the matrix V will 
have n columns of-eigenvectors and the matrix A will have n eigenvalues along the 
diagonal. As noted in NASA CR-2435, good approximate solutions for ,T are obtained 
by finding and using only the “dominant” eigenvectors and eigenvalues of A. Large 
savings in computer time (factor of ten or more) are achieved by finding and using 
only say 5 dominant eigenvectors and eigenvalues for a system of 100 nodes or more. 
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